VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Estimating the effectiveness of stone columns in mitigating post-liquefaction settlement using Plaxis 2D

TR Number

Date

2024-01-12

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

When the excess pore water pressure generated during an earthquake dissipates in saturated loose sand, it causes post-liquefaction reconsolidation that can potentially yield substantial damage to the structure. To build resilient infrastructure, it is paramount to estimate these settlements as well as introduce soil reinforcement techniques to mitigate associated risks. Although there are abundant studies on liquefaction triggering assessment, the study of post-liquefaction settlement and the effects of stone columns as soil reinforcement is a relatively less established field. Generally, simplified empirical methods are employed for settlement evaluations. However, they possess several limitations such as the influence of non-liquefiable layers, soil fabric, permeability, and so on. Numerical models can be utilized to capture these effects with proper validation. This study evaluates the performance of stone columns in reducing seismically induced post-liquefaction settlement utilizing the Finite Element Method (FEM) and constitutive relationship, PM4Sand model, as it has been extended to account for reconsolidation settlement. The ability of the numerical framework to capture reconsolidation settlement is validated by replicating a shake table test performed on Ottawa F-55 sand. Results are compared with a previous numerical study inspired by the same experiment. After validation, a generic numerical model is proposed, and the performance of the natural ground and the reinforced ground is compared. A parametric analysis using 12 different ground motions is performed to assess the effect of varying ground motion intensity on the post-liquefaction settlement. The analysis is also performed with the conventional PM4Sand model (without the extension for reconsolidation). Finally, simulations are performed with a footing load above the soil model. The results demonstrate that (a) the presence of stone columns reduces post-liquefaction settlement, and (b) conventional constitutive models can highly underpredict post-liquefaction settlement. Further research is required to assess the effects of (a) 3D, (b) variations in permeability, (c) parametric analysis of stone columns, and (d) densification of stone columns.

Description

Keywords

Post-liquefaction settlement, Stone Columns, Earthquake, Plaxis 2D

Citation

Collections