Optimization, Learning, and Control for Energy Networks
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Massive infrastructure networks such as electric power, natural gas, or water systems play a pivotal role in everyday human lives. Development and operation of these networks is extremely capital-intensive. Moreover, security and reliability of these networks is critical. This work identifies and addresses a diverse class of computationally challenging and time-critical problems pertaining to these networks. This dissertation extends the state of the art on three fronts. First, general proofs of uniqueness for network flow problems are presented, thus addressing open problems. Efficient network flow solvers based on energy function minimizations, convex relaxations, and mixed-integer programming are proposed with performance guarantees. Second, a novel approach is developed for sample-efficient training of deep neural networks (DNN) aimed at solving optimal network dispatch problems. The novel feature here is that the DNNs are trained to match not only the minimizers, but also their sensitivities with respect to the optimization problem parameters. Third, control mechanisms are designed that ensure resilient and stable network operation. These novel solutions are bolstered by mathematical guarantees and extensive simulations on benchmark power, water, and natural gas networks.