A Grid based Indoor Radiolocation Technique Based on Spatially Coherent Path Loss Model

dc.contributor.authorAmbarkutuk, Muraten
dc.contributor.committeechairFurukawa, Tomonarien
dc.contributor.committeememberAsbeck, Alan T.en
dc.contributor.committeememberBen-Tzvi, Pinhasen
dc.contributor.departmentMechanical Engineeringen
dc.date.accessioned2017-11-15T19:44:06Zen
dc.date.available2017-11-15T19:44:06Zen
dc.date.issued2017en
dc.description.abstractThis thesis presents a grid-based indoor radiolocation technique based on a Spatially Coherent Path Loss Model (SCPL). SCPL is a path loss model which characterizes the radio wave propagation in an environment by solely using Received Signal Strength (RSS) fingerprints. The propagation of the radio waves is characterized by uniformly dividing the environment into grid cells, followed by the estimation of the propagation parameters for each grid cell individually. By using SCPL and RSS fingerprints acquired at an unknown location, the distance between an agent and all the access point in an indoor environment can be determined. A least-squares based trilateration is then used as the global fix of location the agent in the environment. The result of the trilateration is then represented in a probability distribution function over the grid cells induced by SCPL. Since the proposed technique is able to locally model the propagation accounting for attenuation of non-uniform environmental irregularities, the characterization of the path loss in the indoor environment and radiolocation technique might yield improved results. The efficacy of the proposed technique was investigated with an experiment comparing SCPL and an indoor radiolocation technique based on a conventional path loss model.en
dc.description.abstractgeneralThis thesis presents a technique uses radio waves to localize an agent in an indoor environment. By characterizing the difference between transmitted and received power of the radio waves, the agent can determine how far it is away from the transmitting antennas, i.e. access points, placed in the environment. Since the power difference mainly results from obstructions in the environment, the attenuation profile of the environment carries a significant importance in radiolocation techniques. The proposed technique, called Spatially Coherent Path Loss Model (SCPL), characterizes the radio wave propagation, i.e. the attenuation, separately for different regions of the environment, unlike the conventional techniques employing global attenuation profiles. The localization environment is represented with grid-cell structure and the parameters of SCPL model describing the extent of the attenuation of the environment are estimated individually. After creating an attenuation profile of the environment, the agent localizes itself in the localization environment by using SCPL with signal powers received from the access points. This scheme of attenuation profiling constitutes the main contribution of the proposed technique. The efficacy and validity of the proposed technique was investigated with an experiment comparing SCPL and an indoor radiolocation technique based on a conventional path loss model.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.urihttp://hdl.handle.net/10919/80405en
dc.language.isoen_USen
dc.publisherVirginia Techen
dc.rightsCreative Commons Attribution-ShareAlike 3.0 United Statesen
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/us/en
dc.subjectIndoor localizationen
dc.subjectradiolocationen
dc.subjectpath loss modelingen
dc.titleA Grid based Indoor Radiolocation Technique Based on Spatially Coherent Path Loss Modelen
dc.typeThesisen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ambarkutuk_Murat_T_2017.pdf
Size:
5.5 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections