VTechWorks is currently accessible only on the VT network (campus, VPN). Elements deposit is now enabled. We are working to restore full access as soon as possible.
 

Reaction-controlled diffusion

dc.contributor.authorTrimper, S.en
dc.contributor.authorTäuber, Uwe C.en
dc.contributor.authorSchutz, G. M.en
dc.contributor.departmentPhysicsen
dc.date.accessioned2016-09-29T23:49:18Zen
dc.date.available2016-09-29T23:49:18Zen
dc.date.issued2000-11-01en
dc.description.abstractThe dynamics of a coupled two-component nonequilibrium system is examined by means of continuum field theory representing the corresponding master equation. Particles of species A may perform hopping processes only when particles of different type B are present in their environment. Species B is subject to diffusion-limited reactions. If the density of B particles attains a finite asymptotic value (active state), the A species displays normal diffusion. On the other hand, if the B density decays algebraically ∝ t<sup>−α</sup> at long times (inactive state), the effective attractive A-B interaction is weakened. The combination of B decay and activated A hopping processes gives rise to anomalous diffusion, with mean-square displacement <x<sub>A</sub>(t)<sup>2</sup> ∝ t<sup>1−α</sup> for α < 1. Such algebraic subdiffusive behavior ensues for n-th order B annihilation reactions (nB → ∅) with n ≥ 3, and n = 2 for d < 2. The mean-square displacement of the A particles grows only logarithmically with time in the case of B pair annihilation (n = 2) and d ≥ 2 dimensions. For radioactive B decay (n = 1), the A particles remain localized. If the A particles may hop spontaneously as well, or if additional random forces are present, the A-B coupling becomes irrelevant, and conventional diffusion is recovered in the long-time limit.en
dc.description.versionPublished versionen
dc.format.extent6071 - 6077 (7) page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1103/PhysRevE.62.6071en
dc.identifier.issn1539-3755en
dc.identifier.issue5en
dc.identifier.urihttp://hdl.handle.net/10919/73068en
dc.identifier.volume62en
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000165341700033&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectPhysics, Fluids & Plasmasen
dc.subjectPhysics, Mathematicalen
dc.subjectPhysicsen
dc.subjectANNIHILATING RANDOM-WALKSen
dc.subjectLIMITED REACTIONSen
dc.subjectFIELD-THEORYen
dc.titleReaction-controlled diffusionen
dc.title.serialPhysical Review Een
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Physicsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0001387v4.pdf
Size:
159.94 KB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: