Metabolic effects of incremental exercise on Arabian horses fed diets containing corn oil and soy lecithin

dc.contributor.authorKline, Kristen Alissaen
dc.contributor.committeechairKronfeld, David S.en
dc.contributor.committeememberJacobson, Johnen
dc.contributor.committeememberDenbow, D. Michaelen
dc.contributor.departmentAnimal and Poultry Sciencesen
dc.date.accessioned2014-03-14T20:52:32Zen
dc.date.adate1997-10-17en
dc.date.available2014-03-14T20:52:32Zen
dc.date.issued1997-08-07en
dc.date.rdate1997-10-17en
dc.date.sdate1997-08-07en
dc.description.abstractFeeding a fat-containing diet to the exercising horse is a facile way to increase energy density without risking the complications associated with hydrolyzable carbohydrates. Fat adaptation may also result in increases in the utilization of free fatty acids for fuel during exercise and sparing of muscle glycogen. Phosphatidylcholine, the main component of lecithins, can influence muscle contraction and improve endurance capacity during exercise. When it is combined with corn oil in a total mixed ration, soy lecithin is both highly digestible and palatable to horses. Our objectives in this study were to compare the effects of incremental exercise and isocaloric control (CON), corn oil (CO), and a soy lecithin/corn oil (LE) diets on plasma free fatty acids (FFA), cholesterol, glycerol, triglyceride (TG), lactate, and glucose. Also three different statistical models were compared for goodness of fit to the lactate curve. Plasma lactate and glucose both increased slowly early in the incremental exercise test (IET), then increased rapidly as the work intensity increased. Both decreased during recovery. No effects of IET or diet were found for either of these variables. Plasma TG was unchanged during exercise, but increased rapidly during recovery. Plasma FFA decreased from resting early in the IET then remained steady throughout the remainder of exercise. During recovery a rapid increase was exhibited. Plasma glycerol was constant during exercise, but increased during recovery. Plasma cholesterol did not change during exercise or recovery. Diet affected plasma FFA. Plasma FFA were lower for the CO and LE diets than the CON diet during the IET. Plasma glycerol was lower for the CO diet than the CON diet during the IET, with the LE diet intermediate between the two. Plasma cholesterol was higher for the CO and LE diets than the CON diet during the IET. A segmented model and an exponential model were found to have a good fit to the lactate curve. A point of inflection for a rapid increase in plasma lactate during incremental exercise was discovered. When this model was applied to diet, no differences in lactate threshold were found between the diets. Some criteria for fat adaptation were met, namely diet affected plasma FFA, glycerol, and cholesterol. However diet did not affect plasma TG, lactate, or glucose. This indicates that the rate of fatty acid oxidation was increased following fat adaptation, but it did not affect the rate of glucose oxidation and glycolysis during exercise. A lactate threshold for the equine can be obtained using a broken line model. Further studies using this approach are needed to establish its correlation with performance.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-91697-16233en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-91697-16233/en
dc.identifier.urihttp://hdl.handle.net/10919/37030en
dc.publisherVirginia Techen
dc.relation.haspartketd2.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjecttreadmillen
dc.subjectfat adaptationen
dc.subjectequineen
dc.titleMetabolic effects of incremental exercise on Arabian horses fed diets containing corn oil and soy lecithinen
dc.typeThesisen
thesis.degree.disciplineAnimal and Poultry Sciencesen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ketd2.pdf
Size:
288.31 KB
Format:
Adobe Portable Document Format

Collections