Digital Transmission by Hermite N-Dimensional Antipodal Scheme

TR Number

Date

2004-02-06

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

A new N-dimensional digital modulation technique is proposed as a bandwidth efficient method for the transmission of digital data. The technique uses an antipodal scheme in which parallel binary data signs baseband orthogonal waveforms derived from Hermite polynomials. Orthogonality guarantees recoverability of the data from N simultaneously transmitted Hermite waveforms. The signed Hermite waveform is transmitted over a radio link using either amplitude or frequency modulation. The bandwidth efficiency of the amplitude Hermite method is found to be as good as filtered BPSK in practice, while the bit error rates for both modulations are identical. Hermite Keying (HK), the FM modulation version of the N-dimensional Hermite transmission, outperforms constant envelope FSK in terms of spectrum efficiency. With a simple FM detector, the bit error rate of HK is as good as that of non-coherent FSK. In a frequency selective fading channel, the simulation results suggest that specific data bits of HK are relatively secure from errors, which is beneficial in some applications. Symbol synchronization is critical to the system. An optimal synchronization method for the N-dimensional antipodal scheme in additive white Gaussian noise channel is derived. Simulation results confirm that the synchronizer can operate successfully at E/No of 3 dB.

Description

Keywords

Antipodal Scheme, Orthogonal Waveforms, Hermite Keying, Digital Modulation, Optimal Synchronization, N-dimensional PSD

Citation