An Efficient Architecture For Networking Event-Based Fluorescent Imaging Analysis Processes
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Complex user-end procedures for the execution of computationally expensive processes and tools on high performance computing platforms can hinder the scientific progress of researchers across many domains. In addition, such processes occasionally cannot be executed on user-end platforms either due to insufficient hardware resources or unacceptably long computing times. Such circumstances currently extend to highly sophisticated algorithms and tools utilized for analysis of fluorescent imaging data. Although an extensive collection of cloud-computing solutions exist allowing software developers to resolve these issues, such solutions often abstract both developers and integrators from the executing hardware particulars and can inadvertently incentivize non-ideal software design practices. The discussion herein consists of the theoretical design and real-world realization of an efficient architecture to enable direct multi-user parallel remote utilization of such research tools. Said networked scalable real-time architecture is multi-tier, extensible by design to a vast collection of application archetypes, and is not strictly limited to imaging analysis applications. Transport layer interfaces for packetized binary data transmission, asynchronous command issuance mechanisms, compression and decompression algorithm aggregation, and relational database management systems for inter-tier communication intermediation enable a robust, lightweight, and efficient architecture for networking and remotely interfacing with fluorescent imaging analysis processes.