Multivalley Electron Conduction at the Indirect-Direct Crossover Point in Highly Tensile-Strained Germanium
dc.contributor.author | Clavel, Michael B. | en |
dc.contributor.author | Murphy-Armando, F. | en |
dc.contributor.author | Xie, Y. | en |
dc.contributor.author | Henry, K. | en |
dc.contributor.author | Kuhn, M. | en |
dc.contributor.author | Bodnar, Robert J. | en |
dc.contributor.author | Khodaparast, Giti | en |
dc.contributor.author | Smirnov, D. | en |
dc.contributor.author | Heremans, Jean | en |
dc.contributor.author | Hudait, Mantu K. | en |
dc.date.accessioned | 2023-02-21T18:24:10Z | en |
dc.date.available | 2023-02-21T18:24:10Z | en |
dc.date.issued | 2022-12-01 | en |
dc.date.updated | 2023-02-17T19:16:49Z | en |
dc.description.abstract | As forward-looking electron devices increasingly adopt high-mobility low-band-gap materials, such as germanium (Ge), questions remain regarding the feasibility of strain engineering in low-band-gap systems. Particularly, the Ge L-Γ valley separation (∼150 meV) can be overcome by introducing a high degree of tensile strain (ε ≥ 1.5%). It is therefore essential to understand the nature of highly strained Ge transport, wherein multivalley electron conduction becomes a possibility. Here, we report on the competitiveness between L- and Γ-valley transport in highly tensile-strained (ε ∼ 1.6%) Ge/In0.24Ga0.76As heterostructures. Temperature-dependent magnetotransport analysis reveals two contributing carrier populations, identified as lower- and higher-mobility L- and Γ-valley electrons (in Ge), using temperature-dependent Boltzmann transport modeling. Coupling this interpretation with electron-cyclotron-resonance studies, the effective mass (m*) of the higher-mobility Γ-valley electrons is probed, revealing m* = (0.049 ± 0.007)me. Moreover, a comparison of empirical and theoretical m* indicates that these electrons reside primarily in the first-two quantum sublevels of the Ge Γ valley. Consequently, our results provide an insight into the strain-dependent carrier dynamics of Ge, offering alternative pathways toward efficacious strain engineering. | en |
dc.description.version | Accepted version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier | 064083 (Article number) | en |
dc.identifier.doi | https://doi.org/10.1103/physrevapplied.18.064083 | en |
dc.identifier.eissn | 2331-7019 | en |
dc.identifier.issn | 2331-7043 | en |
dc.identifier.issue | 6 | en |
dc.identifier.orcid | Hudait, Mantu [0000-0002-9789-3081] | en |
dc.identifier.orcid | Khodaparast, Giti [0000-0002-1597-6538] | en |
dc.identifier.uri | http://hdl.handle.net/10919/113893 | en |
dc.identifier.volume | 18 | en |
dc.language.iso | en | en |
dc.publisher | American Physical Society | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.title | Multivalley Electron Conduction at the Indirect-Direct Crossover Point in Highly Tensile-Strained Germanium | en |
dc.title.serial | Physical Review Applied | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Science | en |
pubs.organisational-group | /Virginia Tech/Science/Physics | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Electrical and Computer Engineering | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Science/COS T&R Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- NW10262 Accepted version-11-21-2022.pdf
- Size:
- 3.3 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version