Multivalley Electron Conduction at the Indirect-Direct Crossover Point in Highly Tensile-Strained Germanium

dc.contributor.authorClavel, Michael B.en
dc.contributor.authorMurphy-Armando, F.en
dc.contributor.authorXie, Y.en
dc.contributor.authorHenry, K.en
dc.contributor.authorKuhn, M.en
dc.contributor.authorBodnar, Robert J.en
dc.contributor.authorKhodaparast, Gitien
dc.contributor.authorSmirnov, D.en
dc.contributor.authorHeremans, Jeanen
dc.contributor.authorHudait, Mantu K.en
dc.date.accessioned2023-02-21T18:24:10Zen
dc.date.available2023-02-21T18:24:10Zen
dc.date.issued2022-12-01en
dc.date.updated2023-02-17T19:16:49Zen
dc.description.abstractAs forward-looking electron devices increasingly adopt high-mobility low-band-gap materials, such as germanium (Ge), questions remain regarding the feasibility of strain engineering in low-band-gap systems. Particularly, the Ge L-Γ valley separation (∼150 meV) can be overcome by introducing a high degree of tensile strain (ε ≥ 1.5%). It is therefore essential to understand the nature of highly strained Ge transport, wherein multivalley electron conduction becomes a possibility. Here, we report on the competitiveness between L- and Γ-valley transport in highly tensile-strained (ε ∼ 1.6%) Ge/In0.24Ga0.76As heterostructures. Temperature-dependent magnetotransport analysis reveals two contributing carrier populations, identified as lower- and higher-mobility L- and Γ-valley electrons (in Ge), using temperature-dependent Boltzmann transport modeling. Coupling this interpretation with electron-cyclotron-resonance studies, the effective mass (m*) of the higher-mobility Γ-valley electrons is probed, revealing m* = (0.049 ± 0.007)me. Moreover, a comparison of empirical and theoretical m* indicates that these electrons reside primarily in the first-two quantum sublevels of the Ge Γ valley. Consequently, our results provide an insight into the strain-dependent carrier dynamics of Ge, offering alternative pathways toward efficacious strain engineering.en
dc.description.versionAccepted versionen
dc.format.mimetypeapplication/pdfen
dc.identifier064083 (Article number)en
dc.identifier.doihttps://doi.org/10.1103/physrevapplied.18.064083en
dc.identifier.eissn2331-7019en
dc.identifier.issn2331-7043en
dc.identifier.issue6en
dc.identifier.orcidHudait, Mantu [0000-0002-9789-3081]en
dc.identifier.orcidKhodaparast, Giti [0000-0002-1597-6538]en
dc.identifier.urihttp://hdl.handle.net/10919/113893en
dc.identifier.volume18en
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleMultivalley Electron Conduction at the Indirect-Direct Crossover Point in Highly Tensile-Strained Germaniumen
dc.title.serialPhysical Review Applieden
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Physicsen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/Electrical and Computer Engineeringen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NW10262 Accepted version-11-21-2022.pdf
Size:
3.3 MB
Format:
Adobe Portable Document Format
Description:
Accepted version