Evaluation of Soil Aquifer Treatment in a Lab Scale Soil Column Experiment

TR Number
Date
2018-12-12
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Soil aquifer treatment (SAT) during managed aquifer recharge has been studied as a method of providing additional environmental barriers to pathogens and contaminants in indirect potable reuse (IPR) applications. A soil column study was conducted by Hampton Roads Sanitation District in order to evaluate the effectiveness of SAT, as a component of its IPR project involving the replenishment of the Potomac Aquifer System (PAS), in providing a sustainable source of drinking water. Four packed soil columns were constructed with sand from the PAS and were designed to simulate the travel time of 3 days and 30 days. The tests conducted aimed at evaluating pathogen removal (MS2, E. coli and Cryptosporidium oocysts); evaluating attenuation of regulated (nitrate, nitrite, bromate, trihalomethane (THM), haloacetic acids (HAA), organic carbon) and unregulated contaminants of concern that affect drinking water quality. Effective pathogen removal was observed with 6 to 7-log removals of MS2 and E. coli and 3 to 5-log removals of microbeads, used as a surrogate for Cryptosporidium. Removal across 3 day columns was comparable to 30-day columns but the potential to achieve higher removal with longer retention time was acknowledged. Nitrate, bromate, THMs and HAAs were completely reduced in 30-day columns. Total organic carbon was removed at 25 – 35% in all four columns. Seven out of the 106 contaminants of emerging concern (CEC) tested were consistently detected in the column feed and effluent at concentrations greater than 100 ng/L; some compounds showed potential for removal while no conclusive results were drawn for the remaining compounds.

Description
Keywords
soil aquifer treatment, soil columns, indirect potable reuse, managed aquifer recharge
Citation
Collections