VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Reinforcement Learning with Gaussian Processes for Unmanned Aerial Vehicle Navigation

TR Number

Date

2017-08-03

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

We study the problem of Reinforcement Learning (RL) for Unmanned Aerial Vehicle (UAV) navigation with the smallest number of real world samples possible. This work is motivated by applications of learning autonomous navigation for aerial robots in structural inspec- tion. A naive RL implementation suffers from curse of dimensionality in large continuous state spaces. Gaussian Processes (GPs) exploit the spatial correlation to approximate state- action transition dynamics or value function in large state spaces. By incorporating GPs in naive Q-learning we achieve better performance in smaller number of samples. The evalua- tion is performed using simulations with an aerial robot. We also present a Multi-Fidelity Reinforcement Learning (MFRL) algorithm that leverages Gaussian Processes to learn the optimal policy in a real world environment leveraging samples gathered from a lower fidelity simulator. In MFRL, an agent uses multiple simulators of the real environment to perform actions. With multiple levels of fidelity in a simulator chain, the number of samples used in successively higher simulators can be reduced.

Description

Keywords

Reinforcement Learning, Gaussian Processes, Unmanned Aerial Vehicle Navigation

Citation

Collections