Deploying Reinforcement Learning in the Real World: A Case Study on Apptronik Apollo
dc.contributor.author | Welch, Stephen Brian | en |
dc.contributor.committeechair | Stilwell, Daniel J. | en |
dc.contributor.committeemember | Williams, Ryan K. | en |
dc.contributor.committeemember | Leonessa, Alexander | en |
dc.contributor.department | Electrical Engineering | en |
dc.date.accessioned | 2025-06-17T08:00:56Z | en |
dc.date.available | 2025-06-17T08:00:56Z | en |
dc.date.issued | 2025-06-16 | en |
dc.description.abstractgeneral | Deep reinforcement learning (RL) has gained increasing popularity as an approach to achieving dynamic behaviors on legged robots. However, transferring RL behaviors from simulation to reality is a challenging process: imperfect sensors, simulation models, control architecture, and latency all present obstacles to successfully deploying such approaches in the real world. In this thesis, we present an end-to-end overview of our approach to bridging the sim-to-real gap, leveraging domain randomization and careful choices in control architecture in order to successfully deploy RL policies for teleoperation in simulation and on hardware. | en |
dc.description.degree | Master of Science | en |
dc.format.medium | ETD | en |
dc.identifier.other | vt_gsexam:44175 | en |
dc.identifier.uri | https://hdl.handle.net/10919/135528 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Tech | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | reinforcement learning | en |
dc.subject | robotics | en |
dc.subject | humanoid robotics | en |
dc.title | Deploying Reinforcement Learning in the Real World: A Case Study on Apptronik Apollo | en |
dc.type | Thesis | en |
thesis.degree.discipline | Electrical Engineering | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | masters | en |
thesis.degree.name | Master of Science | en |
Files
Original bundle
1 - 1 of 1