RTL Functional Test Generation Using Factored Concolic Execution
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This thesis presents a novel concolic testing methodology and CORT, a test generation framework that uses it for high-level functional test generation. The test generation effort is visualized as the systematic unraveling of the control-flow response of the design over multiple (factored) explorations. We begin by transforming the Register Transfer Level (RTL) source for the design into a high-performance C++ compiled functional simulator which is instrumented for branch coverage. An exploration begins by simulating the design with concrete stimuli. Then, we perform an interleaved cycle-by-cycle symbolic evaluation over the concrete execution trace extracted from the Control Flow Graph (CFG) of the design. The purpose of this task is to dynamically discover means to divert the control flow of the system, by mutating primary-input stimulated control statements in this trace. We record the control-flow response as a Test Decision Tree (TDT), a new representation for the test generation effort. Successive explorations begin at system states heuristically selected from a global TDT, onto which each new decision tree resultant from an exploration is stitched. CORT succeeds at constructing functional tests for ITC99 and IWLS-2005 benchmarks that achieve high branch coverage using the fewest number of input vectors, faster than existing methods. Furthermore, we achieve orders of magnitude speedup compared to previous hybrid concrete and symbolic simulation based techniques.