Electromagnetic Vector-Sensor Direction-of-Arrival Estimation in the Presence of Interference

TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

This research investigates signal processing involving a single electromagnetic vector-sensor, with an emphasis on the problem regarding signal-selective narrowband direction-of-arrival (DOA) estimation in the presence of interference. The approach in this thesis relies on a high-resolution ESPRIT-based algorithm. Unlike spatially displaced arrays, the sensor cannot estimate the DOA of sources using phase differences between the array elements, as the elements are spatially co-located. However, the sensor measures the full electromagnetic field vectors, so the DOA can be estimated through the Poynting vector. Limited information is available in the open literature regarding signal-selective DOA estimation for a single electromagnetic vector-sensor. In this thesis, it is shown how the Uni-Vector-Sensor-ESPRIT (UVS-ESPRIT) algorithm that relies on a time-series invariance and was originally devised for deterministic harmonic sources can be applied to non-deterministic sources. Additionally, two algorithms, one based on cyclostationarity and the other based on fourth-order cumulants, are formulated based on the UVS-ESPRIT algorithm and are capable of selectively estimating the source DOA in the presence of interference based on the statistical properties of the sources. The cyclostationarity-based UVS-ESPRIT algorithm is capable of selectively estimating the signal-of-interest DOA when the sources have the same carrier frequency, and thus overlap in frequency. The cumulant-based UVS-ESPRIT algorithm devised for this sensor relies on the independent component analysis algorithm JADE and is capable of selectively estimating the signal-of-interest DOA through the fourth-order cumulants only, is robust to spatially colored noise, and is capable of estimating the DOA of more sources than sensor elements.

Direction-of-Arrival Estimation, Array Signal Processing, ESPRIT, Independent Component Analysis, Cyclostationarity, Higher-Order Statistics