Nanoparticulate Ni(OH)₂ Films Synthesized from Macrocyclic Nickel(II) Cyclam for Hydrogen Production in Microbial Electrolysis Cells

dc.contributor.authorQin, Mohanen
dc.contributor.authorMaza, William A.en
dc.contributor.authorStratakes, Bethany M.en
dc.contributor.authorAhrenholtz, Spencer R.en
dc.contributor.authorMorris, Amanda J.en
dc.contributor.authorHe, Zhenen
dc.contributor.departmentCivil and Environmental Engineeringen
dc.contributor.departmentChemistryen
dc.date.accessioned2016-11-29T16:00:05Zen
dc.date.available2016-11-29T16:00:05Zen
dc.date.issued2016-01-01en
dc.description.abstractHydrogen production in microbial electrolysis cells (MECs) is a promising approach for energy harvesting from wastewater. The kinetic barriers toward proton reduction necessitate the use of catalysts to drive hydrogen formation at appreciable rates and low applied potentials. Towards this end, cost effective alternatives to platinum catalysts are of paramount interest. In this study, Ni(OH)<sub>2</sub> films were synthesized by electrophoretic deposition from a Ni(II)cyclam precursor solution at varying concentrations (6 mM, 15 mM, and 23 mM). The films were characterized by scanning electron microscopy and X-ray photo-electron spectroscopy to confirm the deposition of Ni(OH)2. The Ni(OH)<sub>2</sub>-modified electrodes were then examined by both traditional electrochemical measurements and in an MEC for hydrogen production. Tafel analysis indicates an exchange current density of ∼0.36 mA cm<sup>−2</sup> with a Tafel slope of ∼120 mV decade<sup>−1</sup> consistent with a rate determining proton adsoprtion step. The hydrogen production rates increased with increasing Ni(II)cyclam concentration in the precursor solution, with the 23 mM-derived film exhibiting a rate comparable to that of a Pt-based catalyst in MEC tests.en
dc.description.versionPublished versionen
dc.format.extentF437 - F442 (6) page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1149/2.1081605jesen
dc.identifier.issn0013-4651en
dc.identifier.issue5en
dc.identifier.urihttp://hdl.handle.net/10919/73526en
dc.identifier.volume163en
dc.language.isoenen
dc.publisherElectrochemical Societyen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000370866700096&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.holderThe Author(s)en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectElectrochemistryen
dc.subjectMaterials Science, Coatings & Filmsen
dc.subjectMaterials Scienceen
dc.subjectWATER OXIDATIONen
dc.subjectCATALYSTSen
dc.subjectREDUCTIONen
dc.subjectCOMPLEXESen
dc.subjectCATHODESen
dc.subjectOXIDESen
dc.subjectCOPPERen
dc.subjectMETALen
dc.titleNanoparticulate Ni(OH)₂ Films Synthesized from Macrocyclic Nickel(II) Cyclam for Hydrogen Production in Microbial Electrolysis Cellsen
dc.title.serialJournal of the Electrochemical Societyen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/Civil & Environmental Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen
pubs.organisational-group/Virginia Tech/Faculty of Health Sciencesen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Chemistryen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2016-ECS-MEC Ni catalyst.pdf
Size:
1.76 MB
Format:
Adobe Portable Document Format
Description:
Publisher's Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: