Incidence of Per-And Polyfluoroalkyl Substances (PFAS) in Private Drinking Water Supplies in Southwest Virginia, USA

Files

TR Number

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Per- and polyfluoroalkyl substances (PFAS) are a class of man-made contaminants of increasing human health concern due to their resistance to degradation, widespread environmental occurrence, bioaccumulation in organ tissue, and potential negative health impacts. Private drinking water supplies may be uniquely vulnerable to PFAS contamination, as these systems are not subject to federal regulations and often include limited treatment prior to use. The goal of this study was to determine the incidence of PFAS contamination in private drinking water supplies in two counties in Southwest Virginia, USA (Floyd and Roanoke), and to examine the potential for reliance on citizen-science based strategies for sample collection in subsequent broader efforts. Samples for inorganic ions, bacteria, and PFAS analysis were collected on separate occasions by participants and experts at the home drinking water point of use (POU) for comparison. Experts also collected outside tap samples for PFAS analysis. At least one PFAS was detectable in 88% of POU samples collected (n=60), with an average total PFAS concentration of 23.5±30.8 ppt. PFOA and PFOS, two PFAS compounds which presently have EPA health advisories, were detectable in 13% and 22% of POU samples, respectively. Of the 31 compounds targeted, 15 were detectable in at least one sample. On average, each POU sample contained approximately 3.3 PFAS compounds, and one sample contained as many as 8 compounds, indicating that exposure to a mixture of PFAS in drinking water may be occurring. Although there were significant differences in total PFAS concentrations between expert and participant collected samples (Wilcoxon, alpha = 0.05), collector bias was inconsistent, and may be due to the time of day of sampling (i.e. morning, afternoon) or specific attributes of a given home. Future studies reliant on participant collection of samples appear possible given proper training, coordination, and instruction.

Description

Keywords

PFAS, Drinking water, Household wells, Citizen science

Citation