Utilizing Recurrent Neural Networks for Temporal Data Generation and Prediction

TR Number

Date

2021-06-15

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The Falling Creek Reservoir (FCR) in Roanoke is monitored for water quality and other key measurements to distribute clean and safe water to the community. Forecasting these measurements is critical for management of the FCR. However, current techniques are limited by inherent Gaussian linearity assumptions. Since the dynamics of the ecosystem may be non-linear, we propose neural network-based schemes for forecasting. We create the LatentGAN architecture by extending the recurrent neural network-based ProbCast and autoencoder forecasting architectures to produce multiple forecasts for a single time series. Suites of forecasts allow for calculation of confidence intervals for long-term prediction. This work analyzes and compares LatentGAN's accuracy for two case studies with state-of-the-art neural network forecasting methods. LatentGAN performs similarly with these methods and exhibits promising recursive results.

Description

Keywords

Neural Networks, LatentGAN, Falling Creek Reservoir

Citation

Collections