Gradient descent optimization of acoustic holograms for transcranial focused ultrasound
dc.contributor.author | Sallam, Ahmed | en |
dc.contributor.author | Cengiz, Ceren | en |
dc.contributor.author | Pewekar, Mihir | en |
dc.contributor.author | Hoffmann, Eric | en |
dc.contributor.author | Legon, Wynn | en |
dc.contributor.author | Vlaisavljevich, Eli | en |
dc.contributor.author | Shahab, Shima | en |
dc.date.accessioned | 2024-11-27T15:16:42Z | en |
dc.date.available | 2024-11-27T15:16:42Z | en |
dc.date.issued | 2024-10-08 | en |
dc.description.abstract | Acoustic holographic lenses, also known as acoustic holograms, can change the phase of a transmitted wavefront in order to shape and construct complex ultrasound pressure fields, often for focusing the acoustic energy on a target region. These lenses have been proposed for transcranial focused ultrasound (tFUS) to create diffraction-limited focal zones that target specific brain regions while compensating for skull aberration. Holograms are currently designed using time-reversal approaches in full-wave time-domain numerical simulations. Such simulations need time-consuming computations, which severely limits the adoption of iterative optimization strategies. In the time-reversal method, the number and distribution of virtual sources can significantly influence the final sound field. Because of the computational constraints, predicting these effects and determining the optimal arrangement is challenging. This study introduces an efficient method for designing acoustic holograms using a volumetric holographic technique to generate focused fields inside the skull. The proposed method combines a modified mixed-domain method for ultrasonic propagation with a gradient descent iterative optimization algorithm. The findings are further validated in underwater experiments with a realistic 3D-printed skull phantom. This approach enables substantially faster holographic computation than previously reported techniques. The iterative process uses explicitly defined loss functions to bias the ultrasound field’s optimization parameters to specific desired characteristics, such as axial resolution, transversal resolution, coverage, and focal region uniformity, while eliminating the uncertainty associated with virtual sources in time-reversal techniques. The proposed techniques enable more rapid hologram computation and more flexibility in tailoring ultrasound fields for specific therapeutic requirements. | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1063/5.0220486 | en |
dc.identifier.eissn | 1089-7550 | en |
dc.identifier.issn | 0021-8979 | en |
dc.identifier.issue | 14 | en |
dc.identifier.orcid | Vlaisavljevich, Eli [0000-0002-4097-6257] | en |
dc.identifier.orcid | Shahab, Shima [0000-0003-1970-5345] | en |
dc.identifier.orcid | Cengiz, Ceren [0000-0003-4420-4171] | en |
dc.identifier.uri | https://hdl.handle.net/10919/123664 | en |
dc.identifier.volume | 136 | en |
dc.language.iso | en | en |
dc.publisher | AIP Publishing | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.title | Gradient descent optimization of acoustic holograms for transcranial focused ultrasound | en |
dc.title.serial | Journal of Applied Physics | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Journal Article | en |
pubs.organisational-group | Virginia Tech | en |
pubs.organisational-group | Virginia Tech/Engineering | en |
pubs.organisational-group | Virginia Tech/Engineering/Mechanical Engineering | en |
pubs.organisational-group | Virginia Tech/Engineering/Biomedical Engineering and Mechanics | en |
pubs.organisational-group | Virginia Tech/Faculty of Health Sciences | en |
pubs.organisational-group | Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | Virginia Tech/Engineering/COE T&R Faculty | en |
pubs.organisational-group | Virginia Tech/Graduate students | en |
pubs.organisational-group | Virginia Tech/Graduate students/Doctoral students | en |