Asian Options: Inverse Laplace Transforms and Martingale Methods Revisited
dc.contributor.author | Sudler, Glenn F. | en |
dc.contributor.committeechair | Rogers, Robert C. | en |
dc.contributor.committeemember | Day, Martin V. | en |
dc.contributor.committeemember | Chance, Donald M. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2014-03-14T20:42:29Z | en |
dc.date.adate | 1999-08-06 | en |
dc.date.available | 2014-03-14T20:42:29Z | en |
dc.date.issued | 1999-07-26 | en |
dc.date.rdate | 2000-08-06 | en |
dc.date.sdate | 1999-08-01 | en |
dc.description.abstract | Arithmetic Asian options are difficult to price and hedge, since, at the present, no closed-form analytical solution exists to price them. This difficulty, moreover, has led to the development of various methods and models used to price these instruments. The purpose of this thesis is two-fold. First, we present an overview of the literature. Secondly, we develop a pseudo-analytical method proposed by Geman and Yor and present an accurate and relatively quick algorithm which can be used to price European-style arithmetic Asian options and their hedge parameters. | en |
dc.description.degree | Master of Science | en |
dc.identifier.other | etd-080199-202859 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-080199-202859/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/34300 | en |
dc.publisher | Virginia Tech | en |
dc.relation.haspart | sudler.pdf | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Hedging | en |
dc.subject | Martingale Methods | en |
dc.subject | Valuation | en |
dc.subject | Laplace Transforms | en |
dc.subject | Asian Options | en |
dc.title | Asian Options: Inverse Laplace Transforms and Martingale Methods Revisited | en |
dc.type | Thesis | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | masters | en |
thesis.degree.name | Master of Science | en |
Files
Original bundle
1 - 1 of 1