Asian Options: Inverse Laplace Transforms and Martingale Methods Revisited

dc.contributor.authorSudler, Glenn F.en
dc.contributor.committeechairRogers, Robert C.en
dc.contributor.committeememberDay, Martin V.en
dc.contributor.committeememberChance, Donald M.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2014-03-14T20:42:29Zen
dc.date.adate1999-08-06en
dc.date.available2014-03-14T20:42:29Zen
dc.date.issued1999-07-26en
dc.date.rdate2000-08-06en
dc.date.sdate1999-08-01en
dc.description.abstractArithmetic Asian options are difficult to price and hedge, since, at the present, no closed-form analytical solution exists to price them. This difficulty, moreover, has led to the development of various methods and models used to price these instruments. The purpose of this thesis is two-fold. First, we present an overview of the literature. Secondly, we develop a pseudo-analytical method proposed by Geman and Yor and present an accurate and relatively quick algorithm which can be used to price European-style arithmetic Asian options and their hedge parameters.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-080199-202859en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-080199-202859/en
dc.identifier.urihttp://hdl.handle.net/10919/34300en
dc.publisherVirginia Techen
dc.relation.haspartsudler.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectHedgingen
dc.subjectMartingale Methodsen
dc.subjectValuationen
dc.subjectLaplace Transformsen
dc.subjectAsian Optionsen
dc.titleAsian Options: Inverse Laplace Transforms and Martingale Methods Revisiteden
dc.typeThesisen
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sudler.pdf
Size:
285.06 KB
Format:
Adobe Portable Document Format

Collections