A discrete-velocity, stationary Wigner equation
dc.contributor | Virginia Tech | en |
dc.contributor.author | Arnold, Anton | en |
dc.contributor.author | Lange, Horst | en |
dc.contributor.author | Zweifel, Paul F. | en |
dc.contributor.department | Physics | en |
dc.date.accessed | 2014-01-25 | en |
dc.date.accessioned | 2014-01-23T13:49:07Z | en |
dc.date.available | 2014-01-23T13:49:07Z | en |
dc.date.issued | 2000-11 | en |
dc.description.abstract | This paper is concerned with the one-dimensional stationary linear Wigner equation, a kinetic formulation of quantum mechanics. Specifically, we analyze the well-posedness of the boundary value problem on a slab of the phase space with given inflow data for a discrete-velocity model. We find that the problem is uniquely solvable if zero is not a discrete velocity. Otherwise one obtains a differential-algebraic equation of index 2 and, hence, the inflow data make the system overdetermined. (C) 2000 American Institute of Physics. [S0022-2488(00)00112-2]. | en |
dc.identifier.citation | Arnold, A; Lange, H; Zweifel, PF, "A discrete-velocity, stationary Wigner equation," J. Math. Phys. 41, 7167 (2000); http://dx.doi.org/10.1063/1.1318732 | en |
dc.identifier.doi | https://doi.org/10.1063/1.1318732 | en |
dc.identifier.issn | 0022-2488 | en |
dc.identifier.uri | http://hdl.handle.net/10919/25116 | en |
dc.identifier.url | http://scitation.aip.org/content/aip/journal/jmp/41/11/10.1063/1.1318732 | en |
dc.language.iso | en_US | en |
dc.publisher | AIP Publishing | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | quantum transport-equations | en |
dc.subject | boundary-value problem | en |
dc.subject | schrodinger | en |
dc.subject | scattering | en |
dc.subject | model | en |
dc.subject | diode | en |
dc.title | A discrete-velocity, stationary Wigner equation | en |
dc.title.serial | Journal of Mathematical Physics | en |
dc.type | Article - Refereed | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1.1318732.pdf
- Size:
- 291.64 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main article