VTechWorks staff will be away for the winter holidays until January 5, 2026, and will respond to requests at that time.
 

Kinetics of Arsenopyrite Oxidative Dissolution by Oxygen

dc.contributor.authorWalker, Forest P.en
dc.contributor.committeechairSchreiber, Madeline E.en
dc.contributor.committeecochairRimstidt, J. Donalden
dc.contributor.committeememberBurbey, Thomas J.en
dc.contributor.departmentGeosciencesen
dc.date.accessioned2011-08-06T16:01:24Zen
dc.date.adate2004-05-03en
dc.date.available2011-08-06T16:01:24Zen
dc.date.issued2004-04-20en
dc.date.rdate2004-05-03en
dc.date.sdate2004-04-21en
dc.description.abstractThe objective of this study is to use a mixed flow reactor system to determine the dissolution rate and infer potential mechanisms of arsenopyrite (FeAsS) oxidation by dissolved oxygen at 25°C and circumneutral pH. Release rates for iron, arsenic and sulfur are calculated for a variety of initial dissolved oxygen (DO) concentrations. Results indicate that the rate of arsenopyrite oxidation, represented by the rate law r = A(6.76 x 10-11) where the rate, r, is in mol/s and surface area, A, is in m2, is not significantly dependent on DO concentration. Arsenic and sulfur are released in a 1:1 molar ratio while iron is released more slowly due to precipitation of iron oxyhydroxides. Our results suggest that the rate determining step in arsenopyrite oxidation is determined by the attachment of oxygen at the anodic site in the mineral, and not the transfer of electrons from the cathodic site to oxygen, as is suggested for other sulfide minerals such as pyrite. Previous work on FeAsS oxidation has been limited to low pH conditions with ferric iron as the oxidant. However, not all arsenopyrite weathering occurs exclusively in acidic environments. For example, at an abandoned arsenopyrite mine in Virginia, the pH of ground and surface waters is consistently between 4 and 7. Results of this study provide important insight to arsenic mobilization processes and rates, at field-relevant conditions, consequently aiding in the effort to understand arsenic release and retention in the environment.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.otheretd-04212004-201854en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-04212004-201854en
dc.identifier.urihttp://hdl.handle.net/10919/9881en
dc.publisherVirginia Techen
dc.relation.haspartThesis_front.pdfen
dc.relation.haspartTitle_page_abstract.pdfen
dc.relation.haspartThesis_body_back.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectarsenopyriteen
dc.subjectarsenicen
dc.subjectOxidationen
dc.titleKinetics of Arsenopyrite Oxidative Dissolution by Oxygenen
dc.typeThesisen
thesis.degree.disciplineGeosciencesen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Title_page_abstract.pdf
Size:
66.29 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Thesis_front.pdf
Size:
91.7 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Thesis_body_back.pdf
Size:
358.24 KB
Format:
Adobe Portable Document Format

Collections