Feasibility Study and Performance Evaluation of Vehicle-to-Everything (V2X) Communications Applications

TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

Vehicular communications are a major subject of research and policy activity in industry, government, and academia. Dedicated Short-Range Communications (DSRC) is currently the main protocol used for vehicular communications, and it operates in the 5.9 GHz band. In addition to DSRC radios, other potential uses of this band include Wi-Fi, LTE-V, and communication among unlicensed devices. This dissertation presents an architecture and a feasibility analysis including field measurements and analysis for vehicle-to-train (V2T) communications, a safety-critical vehicular communication application. The dissertation also presents a survey of research relevant to each of several possible combinations of radio-spectrum and vehicular-safety regulations that would affect use of the 5.9 GHz band, identifies the most challenging of the possible resulting technical challenges, and presents initial measurements to assess feasibility of sharing the band by DSRC radios and other devices that operate on adjacent frequencies using different wireless communication standards.

Although wireless technology is available for safety-critical communications, few applications have been developed to improve railroad crossing safety. A V2T communication system for a safety warning application with DSRC radios can address the need to prevent collisions between trains and vehicles. The dissertation presents a V2T early warning application architecture with a safety notification time and distance. We conducted channel measurements at a 5.86–5.91-GHz frequency and 5.9-GHz DSRC performance measurements at railroad crossings in open spaces, shadowed environments, and rural and suburban environments related to the presented V2T architecture. Our measurements and analyses show that the DSRC protocol can be adapted to serve the purpose of a V2T safety warning system.

The 5.9 GHz band has been sought after by several stakeholders, including traditional mobile operators, DSRC proponents, unlicensed Wi-Fi proponents and Cellular-Vehicle-to-Everything (C-V2X) proponents. The FCC and National Highway Traffic Safety Administration (NHTSA), the two major organizations that are responsible for regulations related to vehicular communications, have not finalized rules regarding this band. The relative merits of the above mentioned wireless communication standards and coexistence issues between these standards are complex. There has been considerable research devoted to understanding the performance of these standards, but in some instances there are gaps in needed research. We have analyzed regulation scenarios that FCC and NHTSA are likely to consider and have identified the technical challenges associated with these potential regulatory scenarios. The technical challenges are presented and for each a survey of relevant technical literature is presented. In our opinion for the most challenging technical requirements that could be mandated by new regulations are interoperability between DSRC and C-V2X and the ability to detect either adjacent channel or co-channel coexisting interference. We conducted initial measurements to evaluate the feasibility of adjacent channel coexistence between DSRC, Wi-Fi, and C-V2X, which is one of the possible regulatory scenarios. We set DSRC at Channel 172, Wi-Fi at Channel 169 for 20 MHz bandwidth and at Channel 167 for 40 MHz, and C-V2X at Channel 174 with almost 100% spectrum capacity. From the measurements, we observed almost no effects on DSRC performance due to adjacent channel interference. Based on our results, we concluded that adjacent channel coexistence between DSRC, C-V2X, and Wi-Fi is possible.

DSRC systems can provide good communication range; however, the range is likely to be reduced in the presence of interference and / or Non-Line-of-Sight (NLoS) conditions. Such environmental factors are the major influence on DSRC performance. By knowing the relationship between DSRC and environmental factors, DSRC radios can be set up in a way that promotes good performance in an environment of interest. We chose propagation channel characteristics to generate DSRC performance modelling by using estimation methods. The conducted DSRC performance measurements and propagation channel characteristics are independent; however, they share the same distance parameters. Results of linear regression to analyze the relationship between DSRC performance and propagation channel characteristics indicate that additional V2T measurements are required to provide data for more precise modeling.

DSRC, V2R, V2T, LTE, V2X, C-V2X, WiFi, propagation channel characteristics, adjacent channel interference, ITS band