VTechWorks staff will be away for the Independence Day holiday from July 4-7. We will respond to email inquiries on Monday, July 8. Thank you for your patience.
 

Devitrification Kinetics and Optical Stability of Optical Fibers at High Temperatures

TR Number

Date

2018-06-07

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Reliable sensing and monitoring systems based on optical fibers operating at high temperatures and in harsh environments are of high demand. One of the limitations of such systems is the devitrification of the fused silica based core and cladding glass at elevated temperatures. Crystallites can nucleate on the surface of the cladding and grow into the core. The formation of these crystalline flaws in the optical fiber causes stress concentration and extrinsic optical scattering and in addition leads to decreased mechanical properties and reduced optical stability. Commercial optical fibers of different compositions and core-cladding design were characterized in this study with respect to crystallization rate under various conditions. The optical stability was monitored with an optical spectrum analyzer. The crystallites were characterized with SEM and optical microscopy. The activation energies of crystallization for High OH and Low OH multimode fibers were estimated by measuring the crystal growth rate at different temperatures. The residual stress resulting from the formation of the crystals, which can lead to decreased mechanical performance of the fibers, was characterized with polarized light optical microscopy. The influence of water vapor in the atmosphere on the crystallization rate was determined. The features induced in the attenuation spectra were consistent with hydroxyl (OH) absorption peak. Spectral features such as thermal emission and hydroxyl absorption bands are discussed.

The results obtained in this study can be used for selecting optical fibers for high temperature applications.

Description

Keywords

fused silica, fiber optics, harsh environments, devitrification

Citation

Collections