VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Fast and adaptive dynamics-on-graphs to dynamics-of-graphs translation

dc.contributor.authorZhang, Leien
dc.contributor.authorChen, Zhiqianen
dc.contributor.authorLu, Chang-Tienen
dc.contributor.authorZhao, Liangen
dc.date.accessioned2024-02-23T14:30:51Zen
dc.date.available2024-02-23T14:30:51Zen
dc.date.issued2023-11-17en
dc.description.abstractNumerous networks in the real world change with time, producing dynamic graphs such as human mobility networks and brain networks. Typically, the “dynamics on graphs” (e.g., changing node attribute values) are visible, and they may be connected to and suggestive of the “dynamics of graphs” (e.g., evolution of the graph topology). Due to two fundamental obstacles, modeling and mapping between them have not been thoroughly explored: (1) the difficulty of developing a highly adaptable model without solid hypotheses and (2) the ineffectiveness and slowness of processing data with varying granularity. To solve these issues, we offer a novel scalable deep echo-state graph dynamics encoder for networks with significant temporal duration and dimensions. A novel neural architecture search (NAS) technique is then proposed and tailored for the deep echo-state encoder to ensure strong learnability. Extensive experiments on synthetic and actual application data illustrate the proposed method's exceptional effectiveness and efficiency.en
dc.description.versionPublished versionen
dc.format.extent9 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifierARTN 1274135 (Article number)en
dc.identifier.doihttps://doi.org/10.3389/fdata.2023.1274135en
dc.identifier.eissn2624-909Xen
dc.identifier.issn2624-909Xen
dc.identifier.orcidLu, Chang Tien [0000-0003-3675-0199]en
dc.identifier.otherPMC10691542en
dc.identifier.pmid38045094en
dc.identifier.urihttps://hdl.handle.net/10919/118118en
dc.identifier.volume6en
dc.language.isoenen
dc.publisherFrontiersen
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/38045094en
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectgraphen
dc.subjectESNen
dc.subjectreservoir computingen
dc.subjectGNNen
dc.subjectNASen
dc.titleFast and adaptive dynamics-on-graphs to dynamics-of-graphs translationen
dc.title.serialFrontiers in Big Dataen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
dcterms.dateAccepted2023-10-20en
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Innovation Campusen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fast and adaptive dynamics-on-graphs to dynamics-of-graphs translation.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: