VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Towards Comprehensive Side-channel Resistant Embedded Systems

Files

TR Number

Date

2021-08-17

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Embedded devices almost involve every part of our lives, such as health condition monitoring, communicating with other people, traveling, financial transactions, etc. Within the embedded devices, our private information is utilized, collected and stored. Cryptography is the security mechanism within the embedded devices for protecting this secret information. However, cryptography algorithms can still be analyzed and attacked by malicious adversaries to steal secret data. There are different categories of attacks towards embedded devices, and the side-channel attack is one of the powerful attacks.

Unlike analyzing the vulnerabilities within the cryptography algorithm itself in traditional attacks, the side-channel attack observes the physical effect signals while the cryptography algorithm runs on the device. These physical effects include the power consumption of the devices, timing, electromagnetic radiations, etc., and we call these physical effects that carry secret information side-channel leakage. By statistically analyzing these side-channel leakages, an attacker can reconstruct the secret information.

The manifestation of side-channel leakage happens at the hardware level. Therefore, the designer has to ensure that the hardware design of the embedded system is secure against side-channel attacks. However, it is very arduous work. An embedded systems design including a large number of electronic components makes it very difficult to comprehensively capture every side-channel vulnerability, locate the root cause of the side-channel leakage, and efficiently fix the vulnerabilities. In this dissertation, we developed methodologies that can help designers detect and fix side-channel vulnerabilities within the embedded system design at low cost and early design stage.

Description

Keywords

Side-Channel Attacks, Pre-silicon, Side-channel Leakage Source, Countermeasures, Simulation, Root Cause Analysis, Leakage Evaluation

Citation