Hurricane and human-induced habitat changes on Fire Island and Westhampton Island, New York, and the effects on breeding piping plovers (Charadrius melodus)
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Barrier islands are dynamic environments facing increasing vulnerability to climate changes, sea level rises, and anthropogenic activities. Hurricane Sandy (October 2012) modified the Atlantic coast of the United States. On Fire Island and Westhampton Island, New York, multiple overwashes and three breaches occurred. The U.S. Army Corps of Engineers filled two breaches, increased dune elevation and stabilized dunes by planting American beachgrass (Ammophila breviligulata). They built two restoration areas to mitigate the impact of an island stabilization project to federally listed breeding piping plovers (Charadrius melodus). The goal of this thesis was to quantify habitat changes after Hurricane Sandy, and assess habitat use of piping plovers specifically in human-created restoration areas. We created land cover maps using an object-based classification method (overall accuracy 85%), and field-collected data from four post-hurricane habitat types. Vegetation cover increased across all habitat types, especially in manipulated (30.1% increase) and natural overwashes (37.9% increase), while dry sand for nesting declined by 8%. Vegetation density indices were higher in natural overwashes than planted engineered dunes, likely a reflection of plant age and establishment. We monitored 83 nests (67 pairs) of piping plovers from 2015–2017. Restoration areas were successful in attracting breeding piping plovers, although pair densities were lowest in this habitat in 2016, and in 2017 plovers selected against the restoration areas (�2 = 29.47, df = 3, p<0.0001). There was no effect of habitat type on reproductive parameters. We suggest vegetation removal may be necessary to maintain early successional habitats for piping plover management.