VTechWorks staff will be away for the Independence Day holiday from July 4-7. We will respond to email inquiries on Monday, July 8. Thank you for your patience.
 

Behavior of Post-Tensioning Systems Subjected to Inelastic Cyclic Loading

dc.contributor.authorBruce, Trevor Louisen
dc.contributor.committeechairEatherton, Matthew R.en
dc.contributor.committeememberMoen, Cristopher D.en
dc.contributor.committeememberRoberts-Wollmann, Carin L.en
dc.contributor.departmentCivil and Environmental Engineeringen
dc.date.accessioned2014-06-25T08:00:46Zen
dc.date.available2014-06-25T08:00:46Zen
dc.date.issued2014-06-24en
dc.description.abstractPost-tensioning (PT) strands have been employed in a number of self-centering seismic force resisting systems as part of the restoring force mechanism which virtually eliminates residual building drifts following seismic loading. As a result of the PT strands large elastic deformation capability, they have been proven to work efficiently in these types of systems. Although typically designed to stay elastic during design basis earthquake events, strands may experience inelastic cyclic loading during extreme earthquakes. Furthermore, the yielding and fracture behavior of PT strand systems is central to the collapse behavior of self-centering systems. The loading conditions to which PT strands are typically subjected in prestressed/post-tensioned concrete applications are vastly dissimilar, and only limited research has explored the behavior of PT strands as subjected to inelastic cyclic loading. The testing program conducted to characterize the behavior of PT strand systems as they might be applied in self-centering applications incorporated more than fifty tests, including monotonic and cyclic tests to failure. Variations in the test configuration included strand obtained from two manufacturers, single-use and multiple-use anchorage systems, and variations in initial post-tensioning strand stress. Characteristics of the response that were investigated included seating losses, deformation capacity prior to initial fracture, additional deformation capacity after initial fracture, and the overall load-deformation behavior. Data was analyzed to provide recommendations for PT strand system usage in self-centering seismic force resisting systems. It was concluded that significant strength and ductility allow PT strand systems to consistently provide self-centering systems with reliable restoring force capability.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:2432en
dc.identifier.urihttp://hdl.handle.net/10919/49111en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectPost-Tensioningen
dc.subjectAnchorage Systemsen
dc.subjectSeismic Behavioren
dc.subjectSelf-Centering Systemsen
dc.subjectInelastic Cyclic Loadingen
dc.titleBehavior of Post-Tensioning Systems Subjected to Inelastic Cyclic Loadingen
dc.typeThesisen
thesis.degree.disciplineCivil Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Bruce_TL_T_2014.pdf
Size:
31.13 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Bruce_TL_T_2014_support_1rev.pdf
Size:
274.47 KB
Format:
Adobe Portable Document Format
Description:

Collections