Apple Pollen Tube Growth Rates Are Regulated by Parentage and Environment
Files
TR Number
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
A greater understanding of apple (Malus domestica) pollen tube growth rates can improve crop load management in commercial orchards. Specifically, applications of caustic bloom-thinning chemicals need to occur when enough, but not too many, flowers have been fertilized to achieve crop load densities that balance yields with marketable fruit sizes. In this study, the pollen tube growth rates of five crabapple (Malus sp.) cultivars were measured in the styles of three maternal cultivars at 12, 18, 24, and 30 °C after 24 hours in a growth chamber. Pollen tube growth rates were greatest for ‘Selkirk’ and ‘Thunderchild’ at 12 °C, and greatest for ‘Indian Summer’, ‘Selkirk’, and ‘Thunderchild’ at 24 °C. Pollen tube growth increased with increasing temperatures until 24 °C. There were minimal pollen tube growth rate increases between 24 and 30 °C. Overall, ‘Snowdrift’ had the slowest pollen tube growth rate of the five evaluated crabapple genotypes. At 24 and 30 °C, ‘Indian Summer’ and ‘Thunderchild’ pollen tubes reached the base of the style most frequently, and ‘Snowdrift’ pollen tubes the least frequently. Pollen tube growth rate was also influenced by the maternal cultivar, with Golden Delicious having relatively faster pollen tube growth than Fuji at 24 and 30 °C. Interactions among paternal and maternal genotypes as well as temperature after pollination reveal complex biological and environmental relationships that can be used to develop more precise crop load management strategies for apple orchards.