Non-equilibrium relaxation in a stochastic lattice Lotka-Volterra model

dc.contributor.authorChen, S.en
dc.contributor.authorTäuber, Uwe C.en
dc.contributor.departmentPhysicsen
dc.date.accessioned2016-09-29T23:45:24Zen
dc.date.available2016-09-29T23:45:24Zen
dc.date.issued2016-04-01en
dc.description.abstractWe employ Monte Carlo simulations to study a stochastic Lotka-Volterra model on a two-dimensional square lattice with periodic boundary conditions. If the (local) prey carrying capacity is finite, there exists an extinction threshold for the predator population that separates a stable active two-species coexistence phase from an inactive state wherein only prey survive. Holding all other rates fixed, we investigate the non-equilibrium relaxation of the predator density in the vicinity of the critical predation rate. As expected, we observe critical slowing-down, i.e., a power law dependence of the relaxation time on the predation rate, and algebraic decay of the predator density at the extinction critical point. The numerically determined critical exponents are in accord with the established values of the directed percolation universality class. Following a sudden predation rate change to its critical value, one finds critical aging for the predator density autocorrelation function that is also governed by universal scaling exponents. This aging scaling signature of the active-to-absorbing state phase transition emerges at significantly earlier times than the stationary critical power laws, and could thus serve as an advanced indicator of the (predator) population’s proximity to its extinction threshold.en
dc.description.versionPublished versionen
dc.format.extent11 pagesen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1088/1478-3975/13/2/025005en
dc.identifier.issn1478-3967en
dc.identifier.issue2en
dc.identifier.urihttp://hdl.handle.net/10919/73064en
dc.identifier.volume13en
dc.language.isoenen
dc.publisherIOPen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000376415400005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectBiochemistry & Molecular Biologyen
dc.subjectBiophysicsen
dc.subjectstochastic particle dynamicsen
dc.subjectpopulation dynamicsen
dc.subjectextinction thresholden
dc.subjectcritical dynamicsen
dc.subjectaging scalingen
dc.subjectearly warning signalsen
dc.subjectPREY-PREDATOR SYSTEMen
dc.subjectOSCILLATORY BEHAVIORen
dc.subjectGAS MODELen
dc.subjectTRANSITIONen
dc.subjectFLUCTUATIONSen
dc.subjectPOPULATIONen
dc.titleNon-equilibrium relaxation in a stochastic lattice Lotka-Volterra modelen
dc.title.serialPhysical Biologyen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Physicsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1511.05114v3.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: