Adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer
dc.contributor.author | Zhu, Linghua | en |
dc.contributor.author | Tang, Ho Lun | en |
dc.contributor.author | Barron, George S. | en |
dc.contributor.author | Calderon-Vargas, F. A. | en |
dc.contributor.author | Mayhall, Nicholas J. | en |
dc.contributor.author | Barnes, Edwin Fleming | en |
dc.contributor.author | Economou, Sophia E. | en |
dc.date.accessioned | 2022-11-01T15:08:51Z | en |
dc.date.available | 2022-11-01T15:08:51Z | en |
dc.date.issued | 2022-07-11 | en |
dc.description.abstract | The quantum approximate optimization algorithm (QAOA) is a hybrid variational quantum-classical algorithm that solves combinatorial optimization problems. While there is evidence suggesting that the fixed form of the standard QAOA Ansatz is not optimal, there is no systematic approach for finding better Ansatze. We address this problem by developing an iterative version of QAOA that is problem tailored, and which can also be adapted to specific hardware constraints. We simulate the algorithm on a class of Max-Cut graph problems and show that it converges much faster than the standard QAOA, while simultaneously reducing the required number of CNOT gates and optimization parameters. We provide evidence that this speedup is connected to the concept of shortcuts to adiabaticity. | en |
dc.description.notes | We thank Bryan T. Gard and Ada Warren for helpful discussions. S.E.E. acknowledges support from the US Department of Energy (Award No. DE-SC0019318) . E.B. and N.J.M. acknowledge support from the US Department of En- ergy (Award No. DE-SC0019199) . | en |
dc.description.sponsorship | US Department of Energy [DE-SC0019318]; US Department of En- ergy [DE-SC0019199] | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1103/PhysRevResearch.4.033029 | en |
dc.identifier.eissn | 2643-1564 | en |
dc.identifier.issue | 3 | en |
dc.identifier.other | 33029 | en |
dc.identifier.uri | http://hdl.handle.net/10919/112327 | en |
dc.identifier.volume | 4 | en |
dc.language.iso | en | en |
dc.publisher | American Physical Society | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.title | Adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer | en |
dc.title.serial | Physical Review Research | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- PhysRevResearch.4.033029.pdf
- Size:
- 554.71 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published version