Design and Evaluation of a Photovoltaic Inverter with Grid-Tracking and Grid-Forming Controls

TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

This thesis applies the concept of a virtual-synchronous-machine- (VSM-) based control to a conventional 250-kW utility-scale photovoltaic (PV) inverter. VSM is a recently-developed control scheme which offers an alternative grid-synchronization method to the conventional grid-tracking control scheme, which is based on the dq phase-locked-loop- (PLL-) oriented vector control. Synchronous machines inherently synchronize to the grid and largely partake in the stabilization of the grid frequency during power system dynamics. The purpose of this thesis is primarily to present the design of a grid-forming control scheme based on the VSM and the derivation of the terminal dq-frame ac impedance of the small-signal model of the inverter and control scheme. This design is also compared to the design of the conventional grid-tracking control structure, both from a loop design and terminal dq-frame ac impedance standpoint. Due to the inherent lax power-balance synchronization, the grid-forming control scheme results in 1 to 2 decades' lower frequency range of negative incremental input impedance in the diagonal elements, which is a favorable condition for stability. Additionally, the stability of the grid-forming control scheme is compared to the conventional grid-tracking control using the generalized Nyquist criterion (GNC) for stability under three modes of operation of active and reactive power injection. It is found that the connection is stable for both control schemes under unity power factor and fixed reactive power modes; however, the grid-forming control is able to inject twice the amount of active power under the voltage regulation mode when compared to the grid-tracking control.

Control, three-phase, high-power, PLL, virtual synchronous machine, renewable energy, dq ac impedance, GNC, stability