Control of the Doubly Salient Permanent Magnet Switched Reluctance Motor
dc.contributor.author | Merrifield, David Bruce | en |
dc.contributor.committeechair | Ramu, Krishnan | en |
dc.contributor.committeemember | Baumann, William T. | en |
dc.contributor.committeemember | Lindner, Douglas K. | en |
dc.contributor.department | Electrical and Computer Engineering | en |
dc.date.accessioned | 2017-04-04T19:50:47Z | en |
dc.date.adate | 2010-05-21 | en |
dc.date.available | 2017-04-04T19:50:47Z | en |
dc.date.issued | 2010-05-04 | en |
dc.date.rdate | 2016-10-07 | en |
dc.date.sdate | 2010-05-07 | en |
dc.description.abstract | The permanent magnet switched reluctance motor (PMSRM) is hybrid dc motor which has the potential to be more effect than the switched reluctance (SRM) and permanent magnet (PM) motors. The PMSRM has a both a salient rotor and stator with permanent magnets placed directly onto the face of common pole stators. The PMSRM is wound like the SRM and can be controlled by the same family of converters. The addition of permanent magnets creates nonlinearities in both the governing electrical and mechanical equations which differentiate the PMSRM from all other classes of electric motors. The primary goal of this thesis is to develop a cohesive and comprehensive control strategy for the PMSRM so as to demonstrate its operation and highlight its efficiency. The control of the PMSRM starts with understanding its region of operation and the underlying torque production of the motor. The selection of operating region is followed by a both linear and nonlinear electrical modeling of the motor and the design of current controllers for the PMSRM. The electromechanical model of the motor is dynamically simulated with the addition of a closed loop speed controller. The speed controller is extended to add an efficiency searching algorithm which finds the operating condition with the highest efficiency online. | en |
dc.description.degree | Master of Science | en |
dc.identifier.other | etd-05072010-112351 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-05072010-112351/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/76988 | en |
dc.language.iso | en_US | en |
dc.publisher | Virginia Tech | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | SRM | en |
dc.subject | Average Torque Control | en |
dc.subject | Speed Control | en |
dc.subject | PMSRM | en |
dc.subject | Current Control | en |
dc.subject | Permanent Magnet Switched Reluctance Motor | en |
dc.subject | Firing Angle Selection Efficiency Based Control | en |
dc.title | Control of the Doubly Salient Permanent Magnet Switched Reluctance Motor | en |
dc.type | Thesis | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Electrical and Computer Engineering | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | masters | en |
thesis.degree.name | Master of Science | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- etd-05072010-112351_Merrifield_DB_T_2010.pdf
- Size:
- 1.49 MB
- Format:
- Adobe Portable Document Format