How soap bubbles freeze
dc.contributor.author | Ahmadi, S. Farzad | en |
dc.contributor.author | Nath, Saurabh | en |
dc.contributor.author | Kingett, Christian M. | en |
dc.contributor.author | Yue, Pengtao | en |
dc.contributor.author | Boreyko, Jonathan B. | en |
dc.contributor.department | Mechanical Engineering | en |
dc.contributor.department | Biomedical Engineering and Mechanics | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2019-07-30T16:43:00Z | en |
dc.date.available | 2019-07-30T16:43:00Z | en |
dc.date.issued | 2019-06-18 | en |
dc.description.abstract | Droplets or puddles tend to freeze from the propagation of a single freeze front. In contrast, videographers have shown that as soap bubbles freeze, a plethora of growing ice crystals can swirl around in a beautiful effect visually reminiscent of a snow globe. However, the underlying physics of how bubbles freeze has not been studied. Here, we characterize the physics of soap bubbles freezing on an icy substrate and reveal two distinct modes of freezing. The first mode, occurring for isothermally supercooled bubbles, generates a strong Marangoni flow that entrains ice crystals to produce the aforementioned snow globe effect. The second mode occurs when using a cold stage in a warm ambient, resulting in a bottom-up freeze front that eventually halts due to poor conduction along the bubble. Blending experiments, scaling analysis, and numerical methods, the dynamics of the freeze fronts and Marangoni flows are characterized. | en |
dc.description.notes | We thank Yanqing Fu for introducing us to the online videos of freezing bubbles. We acknowledge R. Mills and S. Case for the use of their IR camera and D. Mitchem for granting access to the walk-in freezer. Special thanks to J. Lloyd, B. Chang, R. Mukherjee, and H. Park for their help with some of the freezing bubble photography. S. N. acknowledges the support of the European Union's Horizon 2020 research and innovation program LubISS (Marie Sklodowska-Curie grant agreement No 722497). This work was supported by startup funds from the Department of Biomedical Engineering and Mechanics at Virginia Tech. | en |
dc.description.sponsorship | European Union's Horizon 2020 research and innovation program LubISS (Marie Sklodowska-Curie grant) [722497] | en |
dc.description.sponsorship | Department of Biomedical Engineering and Mechanics at Virginia Tech | en |
dc.identifier.doi | https://doi.org/10.1038/s41467-019-10021-6 | en |
dc.identifier.issn | 2041-1723 | en |
dc.identifier.other | 2531 | en |
dc.identifier.pmid | 31213604 | en |
dc.identifier.uri | http://hdl.handle.net/10919/92045 | en |
dc.identifier.volume | 10 | en |
dc.language.iso | en | en |
dc.publisher | Springer Nature | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.title | How soap bubbles freeze | en |
dc.title.serial | Nature Communications | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.dcmitype | StillImage | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s41467-019-10021-6.pdf
- Size:
- 9.26 MB
- Format:
- Adobe Portable Document Format
- Description: