Towards Data-Driven I/O Load Balancing in Extreme-Scale Storage Systems

TR Number
Date
2017-06-15
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Storage systems used for supercomputers and high performance computing (HPC) centers exhibit load imbalance and resource contention. This is mainly due to two factors: the bursty nature of the I/O of scientific applications; and the complex and distributed I/O path without centralized arbitration and control. For example, the extant Lustre parallel storage system, which forms the backend storage for many HPC centers, comprises numerous components, all connected in custom network topologies, and serve varying demands of large number of users and applications. Consequently, some storage servers can be more loaded than others, creating bottlenecks, and reducing overall application I/O performance. Existing solutions focus on per application load balancing, and thus are not effective due to the lack of a global view of the system.

In this thesis, we adopt a data-driven quantitative approach to load balance the I/O servers at extreme scale. To this end, we design a global mapper on Lustre Metadata Server (MDS), which gathers runtime statistics collected from key storage components on the I/O path, and applies Markov chain modeling and a dynamic maximum flow algorithm to decide where data should be placed in a load-balanced fashion. Evaluation using a realistic system simulator shows that our approach yields better load balancing, which in turn can help yield higher end-to-end performance.

Description
Keywords
Lustre storage system, Markov chain model, Max-flow algorithm, Publisher-Subscriber, I/O load balance
Citation
Collections