EpiViewer: An Epidemiological Application For Exploring Time Series Data

TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

Visualization plays an important role in epidemic time series analysis and forecasting. Viewing time series data plotted on a graph can help researchers identify anomalies and unexpected trends that could be overlooked if the data were reviewed in tabular form. However,there are challenges in reviewing data sets from multiple data sources (data can be aggregated in different ways and measure different criteria which can make a direct comparison between time series difficult. In the face of an emerging epidemic, the ability to visualize time series from various sources and organizations and to reconcile these datasets based on different criteria could be key in developing accurate forecasts and identifying effective interventions. Many tools have been developed for visualizing temporal data; however, none yet supports all the functionality needed for easy collaborative visualization and analysis of epidemic data. In this thesis, we develop EpiViewer, a time series exploration dashboard where users can upload epidemiological time series data from a variety of sources and compare, organize, and track how data evolves as an epidemic progresses. EpiViewer provides an easy-to-use web interface for visualizing temporal datasets either as line charts or bar charts. The application provides enhanced features for visual analysis, such as hierarchical categorization, zooming, and filtering, to enable detailed inspection and comparison of multiple time series on a single canvas. Finally, EpiViewer provides a built-in statistical Epi-features module to help users interpret the epidemiological curves.

web services, model view controller architecture, catalogues, epidemiology, metrics, charts