Bat Resource Utilization Along the Potomac River Corridor in Maryland
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In 2021, 17-year periodical cicadas (Magicicada spp.) in Brood X emerged throughout much of the eastern United States. Due to their abundance and lack of predator avoidance during their short six-week period on the above-ground landscape, many species of animals consume cicadas and in turn have short-term habitat use and population responses. The response of bats to periodical cicadas is largely unknown. Using a before-after-control-impact study design, we deployed ultrasonic acoustic detectors during the summers of 2020–2022 within and just outside the range of the cicada emergence along the Potomac River corridor of Maryland and Virginia. For total bat activity, there was significantly more acoustic activity within the range of the cicada emergence the year during and the year following emergence than where emergence did not occur. Additionally, for all individual species and phonic groups, bat activity increased the year during and year after the emergence within the range of periodical cicadas compared to the year prior to emergence. Our study demonstrates that periodical cicadas may serve as a resource pulse that can cause an increase in bat activity and suggests at least a short-term local to regional population increase from immigration the year during and from recruitment the year following. Bats of the mid-Atlantic have been negatively affected by numerous stressors including white-nose syndrome, wind turbine development, and land use change. One species suffering widespread population decline over the last decade in the mid-Atlantic has been the little brown bat (Myotis lucifugus). Understanding the space use and resource selection of remaining populations is critical for management and species recovery. Nevertheless, there are difficulties with studying the movement of insectivorous bats due to their small size and high vagility. Traditional foraging studies of Myotis spp. have used fixed station telemetry and associated multi-azimuthal observations to estimate the location of individuals. However, single azimuth observations are often unable to be included in these studies leading to more potential location estimates missing from movement models. During the summer of 2022, I radio-tagged little brown bats from a maternity colony along the Potomac River in Maryland and collected bearings on nine individuals using fixed station telemetry from sunset until bats returned to the maternity roost. Location estimates were obtained from both single and multi-azimuthal observations. I fit movement models for each individual and used auto-correlated kernel density estimation (AKDE) to estimate space use. I also assessed second and third order habitat selection of individual bats. The average 95% AKDE for males was 889 ha ± 424.6 and 699.3 ha ± 129 for adult females. I found bats had higher predicted use of habitat that was closer in distance to water and wetlands and further from open habitat at the second order and closer to water and open habitat at the third order of resource selection. Habitat associations were similar to previous little brown bat resource selection studies. However, estimates of space use were larger than those using other movement models. This study was novel in that it incorporated single azimuth observations and periodicity into models of space use, thereby increasing sample size and offering a new framework for future telemetry studies. These estimates of space use can be used by land managers to protect the habitat of this imperiled species.