High-Frequency Oriented Design of Gallium-Nitride (GaN) Based High Power Density Converters

dc.contributor.authorSun, Bingyaoen
dc.contributor.committeechairBurgos, Rolandoen
dc.contributor.committeememberKekatos, Vasileiosen
dc.contributor.committeememberLu, Guo Quanen
dc.contributor.committeememberLai, Jih-Shengen
dc.contributor.committeememberBoroyevich, Dushanen
dc.contributor.departmentElectrical Engineeringen
dc.date.accessioned2018-09-20T08:00:34Zen
dc.date.available2018-09-20T08:00:34Zen
dc.date.issued2018-09-19en
dc.description.abstractThe wide-bandgap (WBG) devices, like gallium nitride (GaN) and silicon carbide (SiC) devices have proven to be a driving force of the development of the power conversion technology. Thanks to their distinct advantages over silicon (Si) devices including the faster switching speed and lower switching losses, WBG-based power converter can adopt a higher switching frequency and pursue higher power density and higher efficiency. As a trade-off of the advantages, there also exist the high-frequency-oriented challenges in the adoption of the GaN HEMT under research, including narrow safe gate operating area, increased switching overshoot, increased electromagnetic interference (EMI) in the gate loop and the power stages, the lack of the modules of packages for high current application, high gate oscillation under parallel operation. The dissertation is developed to addressed the all the challenges above to fully explore the potential of the GaN HEMTs. Due to the increased EMI emission in the gate loop, a small isolated capacitor in the gate driver power supply is needed to build a high-impedance barrier in the loop to protect the gate driver from interference. A 2 W dual-output gate driver power supply with ultra-low isolation capacitor for 650 V GaN-based half bridge is presented, featuring a PCB-embedded transformer substrate, achieving 85% efficiency, 1.6 pF isolation capacitor with 72 W/in3 power density. The effectiveness of the EMI reduction using the proposed power supply is demonstrated. The design consideration to build a compact 650 V GaN switching cell is presented then to address the challenges in the PCB layout and the thermal management. With the switching cell, a compact 1 kW 400 Vdc three-phase inverter is built and can operate with 500 kHz switching frequency. With the inverter, the high switching frequency effects on the inverter efficiency, volume, EMI emission and filter design are assessed to demonstrate the tradeoff of the adoption of high switching frequency in the motor drive application. In order to reduce the inverter CM EMI emission above 10 MHz, an active gate driver for 650 V GaN HEMT is proposed to control the dv/dt during turn-on and turn-off independently. With the control strategy, the penalty from the switching loss can be reduced. To build a high current power converter, paralleling devices is a normal approach. The dissertation comes up with the switching cell design using paralleled two and four 650 V GaN HEMTs with minimized and symmetric gate and power loop. The commutation between the paralleled HEMTs is analyzed, based on which the effects from the passive components on the gate oscillation are quantified. With the switching cell using paralleled GaN HEMTs, a 10 kW LLC resonant converter with the integrated litz-wire transformer is designed, achieving 97.9 % efficiency and 131 W/in3 power density. The design consideration to build the novel litz-wire transformer operated at 400 kHz switching frequency is also presented. In all, this work focuses on providing effective solutions or guidelines to adopt the 650 V GaN HEMT in the high frequency, high power density, high efficiency power conversion and demonstrates the advance of the GaN HEMTs in the hard-switched and soft-switched power converters.en
dc.description.abstractgeneralSilicon (Si) -based power semiconductor has developed several decades and achieved numerous outstanding performances, contributing a fast development of the power electronics. While the theatrical limit of the silicon semiconductor is almost reached limiting the progress speed to purse the high-efficiency, high-density high-reliability power conversion, the new material, including gallium-nitride (GaN) and silicon-carbide (SiC), based semiconductor, becomes the driven force to retain the development. Compared with Si-based device, GaN and SiC device own a faster switching speed and a lower on-resistance, enabling the adoption of high switching frequency and the possibility to increase the efficiency, power density and dynamic response. The GaN-based semiconductor is explored to be an even promising game changer than SiC device thanks to a higher theoretical ceiling. However, to adopt GaN-based semiconductors and fully utilize its benefits with high switching frequency, there are numerous high-frequency-oriented challenges, including high frequency oscillation at device termination, increased electromagnetic interference (EMI), the lack of the modules of packages for high current application, high frequency oscillation under parallel operation. The dissertation is developed to address the key high-frequency-oriented challenges to adopt GaN-based semiconductors in the power conversion and come up with the novel design strategy and analysis for high-switching-frequency power conversion using GaN devices. To the reduce the increased EMI emission in the gate loop, a novel PCB-embedded transformer structure is proposed to maintain a low isolation capacitor in the gate driver power supply for the GaN phase leg. With the proposed technique, the dual-output gate driver power supply can achieve high efficiency (85%), ultra-low isolation capacitor (1.6 pF) with high power density (72 W/in³ ). To reduce the high frequency oscillation at the GaN device termination, the strategy to layout GaN devices and its gate driver is proposed with corresponding thermal management. A compact structure for three-phase inverter is then presented, operating with a very high switching frequency (500 kHz). Within the inverter, the high switching frequency effects on the inverter performances are assessed to demonstrate the tradeoff and bottle neck to adopt high switching frequency in the motor drive application. In order to reduce the inverter EMI emission at high frequency ( >10 MHz), an active gate driver for GaN device is proposed for the active dv/dt control strategy. To build a high current power converter, the strategy to parallel GaN devices is proposed in the dissertation with the analysis on the commutation between the paralleled GaN devices. A high-frequency high-current litz-wire transformer structure for LLC resonant converter is presented with modeling and optimization. With the technique, a 10 kW LLC resonant converter achieves high efficiency (97.9 %) and high power density (131 W/in³).en
dc.description.degreePh. D.en
dc.format.mediumETDen
dc.identifier.othervt_gsexam:17021en
dc.identifier.urihttp://hdl.handle.net/10919/85054en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectGallium-Nitride (GaN)en
dc.subjectgate driveren
dc.subjectinverteren
dc.subjectLLC resonant converteren
dc.subjectmagnetic integrationen
dc.subjectelectromagnetic interference (EMI)en
dc.titleHigh-Frequency Oriented Design of Gallium-Nitride (GaN) Based High Power Density Convertersen
dc.typeDissertationen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sun_B_D_2018.pdf
Size:
9.6 MB
Format:
Adobe Portable Document Format