Structural Design Inspired by the Multiscale Mechanics of the Lightweight and Energy Absorbent Cuttlebone

TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

Cuttlebone, the endoskeleton of cuttlefish, offers an intriguing biological structural model for designing low-density cellular ceramics with high stiffness and damage tolerance. Cuttlebone is highly porous (porosity ~93%) and lightweight (density less than 20% of seawater), constructed mainly by brittle aragonite (95 wt%), but capable of sustaining hydrostatic water pressures over 20 atmospheres and exhibits energy dissipation capability under compression comparable to many metallic foams (~4.4 kJ/kg). Here we computationally investigate how such a remarkable mechanical efficiency is enabled by the multiscale structure of cuttlebone. Using the common cuttlefish, Sepia Officinalis, as a model system, we first conducted high-resolution synchrotron micro-computed tomography (µ-CT) and quantified the cuttlebone's multiscale geometry, including the 3D asymmetric shape of individual walls, the wall assembly patterns, and the long-range structural gradient of walls across the entire cuttlebone (ca. 40 chambers). The acquired 3D structural information enables systematic finite-element simulations, which further reveal the multiscale mechanical design of cuttlebone: at the wall level, wall asymmetry provides optimized energy dissipation while maintaining high structural stiffness; at the chamber level, variation of walls (number, pattern, and waviness amplitude) contributes to progressive damage; at the entire skeletal level, the gradient of chamber heights tailors the local mechanical anisotropy of the cuttlebone for reduced stress concentration. Our results provide integrated insights into understanding the cuttlebone's multiscale mechanical design and provide useful knowledge for the designs of lightweight cellular ceramics. Upon the prior curvature analysis of the cuttlebone walls, we discovered that the walls were primarily "saddle-shaped". Thus, the characterization of different curvatures, varying between flat, domed, saddled, or cylindrical surfaces, were explored. A mathematical model was utilized to generate multiple walls with different curvature characteristics. We observed the mechanical performance of these walls via finite-element analysis and formulated different techniques for designing effective ceramic structures through incorporation of curvature.

Biomechanics, cuttlebone, cuttlebone-inspired, energy absorption, lightweight cellular materials, multifunctionality, multiscale mechanical design, wall curvature, curved walls