Statistically robust Pseudo Linear Identification

dc.contributor.authorAlnor, Haralden
dc.contributor.committeechairVanLandingham, Hugh F.en
dc.contributor.committeememberLindner, Douglas K.en
dc.contributor.committeememberMili, Lamine M.en
dc.contributor.departmentElectrical Engineeringen
dc.date.accessioned2014-03-14T21:45:16Zen
dc.date.adate2012-09-08en
dc.date.available2014-03-14T21:45:16Zen
dc.date.issued1989-03-31en
dc.date.rdate2012-09-08en
dc.date.sdate2012-09-08en
dc.description.abstractIt is common to assume that the noise disturbing measuring devices is of a Gaussian nature. But this assumption is not always fulfilled. A few examples are the cases where the measurement device fails periodically, the data transmission from device to microprocessor fails or the A/D conversion fails. In these cases the noise will no longer be Gaussian distributed, but rather the noise will be a mixture of Gaussian noise and data not related to the physical process. This posses a problem for estimators derived under the Gaussian assumption, in the sense L that these estimators are likely to produce highly biased estimates in a non Gaussian environment. This thesis devises a way to robustify the Pseudo Linear Identification algorithm (PLID) which is a joint parameter and state estimator of a Kalman filter type. The PLID algorithm is originally derived under a Gaussian noise assumption. The PLID algorithm is made robust by filtering the measurements through a nonlinear odd symmetric function, called the mb function, and let the covariance updating depend on how far away the measurement is from the prediction. In the original PLID the measurements are used unfiltered in the covariance calculation.en
dc.description.degreeMaster of Scienceen
dc.format.extentx, 137 leavesen
dc.format.mediumBTDen
dc.format.mimetypeapplication/pdfen
dc.identifier.otheretd-09082012-040612en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-09082012-040612/en
dc.identifier.urihttp://hdl.handle.net/10919/44697en
dc.language.isoenen
dc.publisherVirginia Techen
dc.relation.haspartLD5655.V855_1989.A425.pdfen
dc.relation.isformatofOCLC# 19985596en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V855 1989.A425en
dc.subject.lcshMathematical modelsen
dc.subject.lcshRobust statisticsen
dc.titleStatistically robust Pseudo Linear Identificationen
dc.typeThesisen
dc.type.dcmitypeTexten
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V855_1989.A425.pdf
Size:
4.22 MB
Format:
Adobe Portable Document Format
Description:

Collections