Development of a Novel Probe for Engine Ingestion Sampling in Parallel With Initial Developments of a High-speed Particle-laden Jet

TR Number

Date

2021-12-07

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Particle ingestion remains an important concern for turbine engines, specifically those in aircraft. Sand and related particles tend to become suspended in air, posing an omnipresent health threat to engine components. This issue is most prevalent during operation in sandy environments at low altitudes. Takeoffs and landings can blow a significant quantity of particulates into the air; these particulates may then be ingested by the engine. Helicopters and other Vertical Takeoff and Landing (VTOL) aircraft are at high risk of engine damage in these conditions. Compressor blades are especially vulnerable, as they may encounter the largest of particles. Robust and thorough experimental and computational studies have been conducted to understand the relationships between particle type, shape, and size and their effects on compressor and turbine blade wear. However, there is a lack of literature that focuses on sampling particles directly from the flow inside an engine. Instead, experimental studies that estimate the trajectories and behavior of particles are based upon the resulting erosion of blades and the expected aerodynamics and physics of the region. It is important to close this gap to fully understand the role of particulates in eroding engine components. This study investigated the performance of a particle-sampling probe designed to collect particles after the first compressor stage of a Rolls-Royce Allison Model 250 turboshaft engine. The engine was not used in this investigation; rather, a rig that creates a particle-laden jet was developed in order to determine probe sampling sensitivity with respect to varying angles of attack and flow Mach number. Particle image velocimetry (PIV) was utilized to understand the aerodynamic effects of the probe on smaller particles.

Description

Keywords

Particle-sampling probe, Flow sampling, Sand ingestion, Jet engine sand damage, Aircraft sampling, Compressor erosion, Erosion rig

Citation

Collections