Comparison of linear and volumetric criteria for the determination of therapeutic response in dogs with intracranial gliomas

Abstract

Background: Brain tumor therapeutic responses can be quantified from magnetic resonance images (MRI) using 1- (1D) and 2-dimensional (2D) linear and volumetric methods, but few studies in dogs compare these techniques. Hypotheses: Linear methods will be obtained faster, but have less agreement than volumetric measurements. Therapeutic response agreement will be highest with the total T2W tumor volumetric (TTV) method. Therapeutic response at 6-weeks will correlate with overall survival (OS). Animals: Forty-six dogs with intracranial gliomas. Methods: Prospective study. Three raters measured tumors using 1D and 2D linear, TTV, and contrast-enhancing volumetric (CEV) techniques on 143 brain MRI to determine agreement between methods, define therapeutic responses, and assess relations with OS. Results: Raters performed 1D the fastest (2.9 ± 0.57 minutes) and CEV slowest (17.8 ± 6.2 minutes). Inter- and intraobserver agreements were excellent (intraclass correlations ≥.91) across methods. Correlations between linear (1D vs 2D; ρ >.91) and volumetric (TTV vs CEV; ρ >.73) methods were stronger than linear to volumetric comparisons (ρ range,.26-.59). Incorporating clinical and imaging data resulted in fewer discordant therapeutic responses across methods. Dogs having partial tumor responses at 6 weeks had a lower death hazard than dogs with stable or progressive disease when assessed using 2D, CEV, and TTV (hazard ration 2.1; 95% confidence interval, 1.22-3.63; P =.008). Conclusions and Clinical Importance: One-dimensional, 2D, CEV, and TTV are comparable for determining therapeutic response. Given the simplicity, universal applicability, and superior performance of the TTV, we recommend its use to standardize glioma therapeutic response criteria.

Description

Keywords

dog, magnetic resonance imaging, neurooncology, neuroradiology, radiology and diagnostic imaging, 3009 Veterinary Sciences, 30 Agricultural, Veterinary and Food Sciences, Biomedical Imaging, Brain Cancer, Cancer, Rare Diseases, Brain Disorders, Clinical Research, Neurosciences

Citation