VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Multi-level Parallelism with MPI and OpenACC for CFD Applications

Files

TR Number

Date

2017-06-14

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

High-level parallel programming approaches, such as OpenACC, have recently become popular in complex fluid dynamics research since they are cross-platform and easy to implement. OpenACC is a directive-based programming model that, unlike low-level programming models, abstracts the details of implementation on the GPU. Although OpenACC generally limits the performance of the GPU, this model significantly reduces the work required to port an existing code to any accelerator platform, including GPUs. The purpose of this research is twofold: to investigate the effectiveness of OpenACC in developing a portable and maintainable GPU-accelerated code, and to determine the capability of OpenACC to accelerate large, complex programs on the GPU. In both of these studies, the OpenACC implementation is optimized and extended to a multi-GPU implementation while maintaining a unified code base. OpenACC is shown as a viable option for GPU computing with CFD problems.

In the first study, a CFD code that solves incompressible cavity flows is accelerated using OpenACC. Overlapping communication with computation improves performance for the multi-GPU implementation by up to 21%, achieving up to 400 times faster performance than a single CPU and 99% weak scalability efficiency with 32 GPUs.

The second study ports the execution of a more complex CFD research code to the GPU using OpenACC. Challenges using OpenACC with modern Fortran are discussed. Three test cases are used to evaluate performance and scalability. The multi-GPU performance using 27 GPUs is up to 100 times faster than a single CPU and maintains a weak scalability efficiency of 95%.

Description

Keywords

Graphics processing unit, Directive-based programming, OpenACC, Lid-driven cavity, Multi-GPU, Parallel computing

Citation

Collections