Rayleigh-Benard convection in large-aspect-ratio domains
Files
TR Number
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The coarsening and wave number selection of striped states growing from random initial conditions are studied in a nonrelaxational, spatially extended, and far-from-equilibrium system by performing large-scale numerical simulations of Rayleigh-Bénard convection in a large-aspect-ratio cylindrical domain with experimentally realistic boundaries. We find evidence that various measures of the coarsening dynamics scale in time with different power-law exponents, indicating that multiple length scales are required in describing the time dependent pattern evolution. The translational correlation length scales with time as t0.12, the orientational correlation length scales as t0.54, and the density of defects scale as t(-0.45). The final pattern evolves toward the wave number where isolated dislocations become motionless, suggesting a possible wave number selection mechanism for large-aspect-ratio convection.