Phase Transitions and Scaling in Systems Far From Equilibrium

dc.contributor.authorTäuber, Uwe C.en
dc.contributor.departmentPhysicsen
dc.date.accessioned2016-09-29T23:44:48Zen
dc.date.available2016-09-29T23:44:48Zen
dc.date.issued2017en
dc.description.abstractScaling ideas and renormalization group approaches proved crucial for a deep understanding and classification of critical phenomena in thermal equilibrium. Over the past decades, these powerful conceptual and mathematical tools were extended to continuous phase transitions separating distinct non-equilibrium stationary states in driven classical and quantum systems. In concordance with detailed numerical simulations and laboratory experiments, several prominent dynamical universality classes have emerged that govern large-scale, long-time scaling properties both near and far from thermal equilibrium. These pertain to genuine specific critical points as well as entire parameter space regions for steady states that display generic scale invariance. The exploration of non-stationary relaxation properties and associated physical aging scaling constitutes a complementary potent means to characterize cooperative dynamics in complex out-of-equilibrium systems. This article describes dynamic scaling features through paradigmatic examples that include near-equilibrium critical dynamics, driven lattice gases and growing interfaces, correlation-dominated reaction-diffusion systems, and basic epidemic models.en
dc.description.notes26 pages; general introduction and 4 figures added; submitted to Annu. Rev. Condens. Matter Phys. 8 (2017)en
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/73063en
dc.language.isoenen
dc.relation.urihttp://arxiv.org/abs/1604.04487v3en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectcond-mat.stat-mechen
dc.titlePhase Transitions and Scaling in Systems Far From Equilibriumen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Physicsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1604.04487v3.pdf
Size:
709.08 KB
Format:
Adobe Portable Document Format
Description:
Submitted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: