Growth series for expansion complexes

dc.contributor.authorCannon, J. W.en
dc.contributor.authorFloyd, W. J.en
dc.contributor.authorParry, W. R.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2017-01-14T01:45:24Zen
dc.date.available2017-01-14T01:45:24Zen
dc.date.issued2016-12en
dc.description.abstractThis paper is concerned with growth series for expansion complexes for finite subdivision rules. Suppose X is an expansion complex for a finite subdivision rule with bounded valence and mesh approaching 0, and let S be a seed for X. One can define a growth series for (X,S) by giving the tiles in the seed norm 0 and then using either the skinny path norm or the fat path norm to recursively define norms for the other tiles. The main theorem is that, with respect to either of these norms, the growth series for (X,S) has polynomial growth. Furthermore, the degrees of the growth rates of hyperbolic expansion complexes are dense in the ray [2,\infty).en
dc.description.notes11 pages, 6 figuresen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/74306en
dc.language.isoenen
dc.relation.urihttp://arxiv.org/abs/1612.04771v1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectmath.DSen
dc.subject52C20en
dc.subject52C26 (Primary)en
dc.subject05B45en
dc.subject30F45 (Secondary)en
dc.titleGrowth series for expansion complexesen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Mathematicsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1612.04771v1.pdf
Size:
302.85 KB
Format:
Adobe Portable Document Format
Description:
Submitted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: