VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Designing Microstructure through Reverse Peritectoid Phase Transformation in Ni₃Mo Alloy

dc.contributor.authorKhalfallah, Ibrahimen
dc.contributor.committeechairAning, Alexander O.en
dc.contributor.committeememberReynolds, William T. Jr.en
dc.contributor.committeememberSuchicital, Carlos T. A.en
dc.contributor.departmentMaterials Science and Engineeringen
dc.date.accessioned2017-06-13T19:43:39Zen
dc.date.adate2017-02-03en
dc.date.available2017-06-13T19:43:39Zen
dc.date.issued2016-12-07en
dc.date.rdate2017-02-03en
dc.date.sdate2016-12-14en
dc.description.abstractHigh-energy ball milling and powder metallurgy methods were used to produce a partially alloyed nickel and molybdenum of γ-Ni₃Mo composition (Ni-25at.%Mo). Milled powders were cold-compacted, sintered/solutionized at 1300°C for 100h sintering followed by quenching. Three transformation studies were performed. First, the intermetallic γ-Ni₃Mo was formed from the supersaturated solution at temperatures ranging between 600°C and 900°C for up to 100h. The 100% stable γ-Ni₃Mo phase was formed at 600°C after 100h, while aging at temperatures ranging between 650°C and 850°C for 25h was not sufficient to complete the transformation. The δ-NiMo phase was observed only at 900°C as cellular and basket strands precipitates. Second, the reversed peritectoid transformation from γ-Ni₃Mo to α-Ni and δ-NiMo was performed. Supersaturated solid solution samples were first aged at 600C for 100h followed by quenching to form the equilibrium γ-Ni₃Mo phase. After that, the samples were heat treated between 910°C and 1050°C for up to 10h followed by quenching. Regardless of heat-treatment temperature, samples heat-treated for shorter times exhibited small precipitates of δ-NiMo along and within grain boundaries of α-Ni phase, and it coarsened with time. Third, the transformation from the supersaturated solution α-Ni to the peritectoid two-phase region was performed. The samples were aged between 910°C and 1050°C for up to 10h followed by quenching. Precipitates of δ-NiMo were observed in the α-Ni matrix as small particles and then coarsened with aging time. In all three cases, hardness values increased and peaked in a way similar to that of traditional aging, except that the peak occurred much rapidly in the second and third cases. In the first case, hardness increased by about 113.6% due to the development of the new phases, while the hardness increased by 90.5% and 77.2% in the second and third cases, respectively.en
dc.description.abstractgeneralMechanical milling and powder processing methods were used to produce Ni-25at.%Mo alloy. Nickel and molybdenum powders were milled for 10h, pressed, and then sintered at 1300°C for 100h followed by quenching. Three different phase transformation studies were performed. The goal of the first study was to investigate the formation of γ-Ni<sub>3</sub>Mo phase from the solid solution Ni at temperatures ranging between 600°C and 900°C followed by quenching. The 100% γ-Ni3Mo phase was formed at 600°C after 100h. In the second study, the formation of α-Ni and δ-NiMo from γ-Ni<sub>3</sub>Mo phase was performed. The heat treatments were done between 910°C and 1050°C for up to 10h followed by quenching. The γ-Ni<sub>3</sub>Mo phase was not stable at temperatures between 910°C and 1050°C. Small precipitates of δ-NiMo along and within grain boundaries of α-Ni phase were observed, and they coarsened with time. The third study included the formation of α-Ni and δ-NiMo from solid solution Ni. The heat treatments were performed between 910°C and 1050°C for up to 10h followed by quenching. Precipitates of δ-NiMo were observed in the α-Ni matrix. In all three cases, hardness value increased and peaked with heat treatment times as particles coarsened. In the first case, hardness increased by about 113.6% due to the development of the new phases, while the hardness increased by 90.5% and 77.2% in the second and third cases, respectively.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-12142016-092226en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-12142016-092226/en
dc.identifier.urihttp://hdl.handle.net/10919/78058en
dc.language.isoen_USen
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectNi3Mo Alloyen
dc.subjectAge Hardeningen
dc.subjectReverse Peritectoiden
dc.subjectBulk Processingen
dc.titleDesigning Microstructure through Reverse Peritectoid Phase Transformation in Ni₃Mo Alloyen
dc.typeThesisen
dc.type.dcmitypeTexten
thesis.degree.disciplineMaterials Science and Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
etd-12142016-092226_Khalfallah_I_T_2016.pdf
Size:
7.31 MB
Format:
Adobe Portable Document Format

Collections