Experimental Investigation of Dimples as a Heat Transfer Enhancement Feature in Narrow Diverging and Converging Channels

dc.contributor.authorSrinivasan, Shreyasen
dc.contributor.committeechairEkkad, Srinath V.en
dc.contributor.committeememberTafti, Danesh K.en
dc.contributor.committeememberMa, Linen
dc.contributor.departmentMechanical Engineeringen
dc.date.accessioned2015-02-14T07:00:06Zen
dc.date.available2015-02-14T07:00:06Zen
dc.date.issued2013-08-22en
dc.description.abstractDetailed heat transfer coefficient distributions have been obtained for narrow converging and diverging channels with and without enhancement features. The enhancement feature considered for this study is dimples (inline and staggered) on the main heat transfer surfaces. All the measurements are presented at Reynolds numbers of 3500, 8900, 18000, and 7000, 14000, 28000 for converging and diverging channels respectively. Pressure drop measurements for the overall channel are also presented to evaluate the heat transfer enhancement geometry with respect to pumping power requirements. The test models were studied for wall heat transfer coefficient measurements using the transient liquid crystal technique. The modeled wall inner surfaces were sprayed with thermochromic liquid crystals, and a transient test was used to obtain the local heat transfer coefficients from the measured color change. Analysis of results shows that dimples, in general, have very good enhancement capabilities and staggered dimpled surfaces provide considerably higher heat transfer coefficients and a reasonable pressure drop compared to inline dimpled configuration. Additionally, this study was extended to understand the effect of strategic placement of dimples (staggered) at various locations along the channel to understand regions that contribute significantly to the overall enhancement.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:1531en
dc.identifier.urihttp://hdl.handle.net/10919/51422en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectHeat transferen
dc.subjectNarrow channelsen
dc.subjectDimplesen
dc.subjectHeat transfer enhancements.en
dc.titleExperimental Investigation of Dimples as a Heat Transfer Enhancement Feature in Narrow Diverging and Converging Channelsen
dc.typeThesisen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Srinivasan_S_T_2013.pdf
Size:
9.93 MB
Format:
Adobe Portable Document Format

Collections