Notes on gauging noninvertible symmetries. Part I. Multiplicity-free cases
dc.contributor.author | Perez-Lona, Alonso | en |
dc.contributor.author | Robbins, D. | en |
dc.contributor.author | Sharpe, E. | en |
dc.contributor.author | Vandermeulen, T. | en |
dc.contributor.author | Yu, X. | en |
dc.date.accessioned | 2024-02-28T14:09:33Z | en |
dc.date.available | 2024-02-28T14:09:33Z | en |
dc.date.issued | 2024-02-21 | en |
dc.date.updated | 2024-02-25T04:13:19Z | en |
dc.description.abstract | In this paper we discuss gauging noninvertible zero-form symmetries in two dimensions. We specialize to certain gaugeable cases, specifically, fusion categories of the form for a suitable Hopf algebra (which includes the special case Rep(G) for G a finite group). We also specialize to the case that the fusion category is multiplicity-free. We discuss how to construct a modular-invariant partition function from a choice of Frobenius algebra structure on . We discuss how ordinary G orbifolds for finite groups G are a special case of the construction, corresponding to the fusion category Vec(G) = Rep(ℂ[G]*). For the cases Rep(S3), Rep(D4), and Rep(Q8), we construct the crossing kernels for general intertwiner maps. We explicitly compute partition functions in the examples of Rep(S3), Rep(D4), Rep(Q8), and , and discuss applications in c = 1 CFTs. We also discuss decomposition in the special case that the entire noninvertible symmetry group acts trivially. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Journal of High Energy Physics. 2024 Feb 21;2024(2):154 | en |
dc.identifier.doi | https://doi.org/10.1007/JHEP02(2024)154 | en |
dc.identifier.uri | https://hdl.handle.net/10919/118204 | en |
dc.language.iso | en | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.holder | The Author(s) | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.title | Notes on gauging noninvertible symmetries. Part I. Multiplicity-free cases | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |