Continuous elastic phase transitions and disordered crystals

dc.contributor.authorSchwabl, Franzen
dc.contributor.authorTäuber, Uwe C.en
dc.contributor.departmentPhysicsen
dc.date.accessioned2016-09-30T00:22:02Zen
dc.date.available2016-09-30T00:22:02Zen
dc.date.issued1996-12-15en
dc.description.abstractWe review the theory of second–order (ferro–)elastic phase transitions, where the order parameter consists of a certain linear combination of strain tensor components, and the accompanying soft mode is an acoustic phonon. In three–dimensional crystals, the softening can occur in one– or two–dimensional soft sectors. The ensuing anisotropy reduces the effect of fluctuations, rendering the critical behaviour of these systems classical for a one–dimensional soft sector, and classical with logarithmic corrections in case of a two–dimensional soft sector. The dynamical critical exponent is z = 2, and as a consequence the sound velocity vanishes as c<sub>s</sub> ∝ |T − Tc|<sup>1/2</sup>, while the phonon damping coefficient is essentially temperature–independent. Even if the elastic phase transition is driven by the softening of an optical mode linearly coupled to a transverse acoustic phonon, the critical exponents retain their mean–field values. Disorder may lead to a variety of precursor effects and modified critical behaviour. Defects that locally soften the crystal may induce the phenomenon of local order parameter condensation. When the correlation length of the pure system exceeds the average defect separation n<sub>D</sub><sup>−1/3</sup>, a disorder–induced phase transition to a state with non–zero average order parameter can occur at a temperature T<sub>c</sub>(n<sub>D</sub>) well above the transition temperature T<sup>0</sup><sub>c</sub> of the pure crystal. Near T<sup>0</sup><sub>c</sub>, the order–parameter curve, susceptibility, and specific heat appear rounded. For T < T<sub>c</sub>(n<sub>D</sub>) the spatial inhomogeneity induces a static central peak with finite q width in the scattering cross section, accompanied by a dynamical component that is confined to the very vicinity of the disorder–induced phase transition.en
dc.description.versionPublished versionen
dc.format.extent2847 - 2873 page(s)en
dc.identifier.doihttps://doi.org/10.1098/rsta.1996.0132en
dc.identifier.issn1364-503Xen
dc.identifier.issue1720en
dc.identifier.urihttp://hdl.handle.net/10919/73078en
dc.identifier.volume354en
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:A1996VZ72700004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleContinuous elastic phase transitions and disordered crystalsen
dc.title.serialPhilosophical Transactions of The Royal Society A-Mathematical Physical And Engineering Sciencesen
dc.typeArticle - Refereeden
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Physicsen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
9607028v2.pdf
Size:
295.03 KB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: