Modeling Transit Vehicle Travel Time Components for Use in Transit Applications
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Traffic congestion has continued to grow as a result of urbanization, which is associated with an increase in car ownership. As a way to improve the efficiency of the transportation system, emerging technologies including Connected Automated Vehicles (CAVs), loop detectors, Advanced Traveler Information Systems (ATISs), and Advanced Public Transportation Systems (APTSs) are being deployed. One of the successful techniques that has demonstrated benefits for system users, operators and agencies is Transit Signal Priority (TSP). TSP favors transit vehicles in the allocation of green times at traffic signals. A successful deployment of TSP depends on different factors including the prediction of various components of transit vehicle travel times to predict when a vehicle would arrive at a traffic signal. Current TSP state-of-the-art and state-of-practice disregards the impact of bus stops, transit vehicle characteristics, driver, and the prevailing traffic conditions on the predicted arrival time of transit vehicles at traffic signals. Considering these factors is important the success of TSP hinges on the ability to predict transit vehicle arrival times at traffic signals in order to provide these vehicles with priority service.
The main contribution of this research effort relates to the modeling of the various components of transit vehicle travel times. This model explicitly captures the impact of passengers, drivers and vehicle characteristics on transit vehicle travel times thus providing better models for use in various transit applications, including TSP. Furthermore, the thesis presents a comprehensive understanding of the determinants of each travel time component. In essence, the determinants of each component, the stochasticity in these determinants and the correlation between them are explicitly modeled and captured.
To achieve its contribution, the study starts by improving the current state-of-the-art and state-of-practice transit vehicle boarding/alighting (BA) models by explicitly accounting for the different factors that impact BA times while ensuring a relatively generalized formulation. Current formulations are specific for the localities and bus configurations that they were developed for. Alternatively, the proposed BA time model is independent of the transit vehicle capacity and transit vehicle configuration (except for the fact that it is only valid for two-door buses – a separate door for alighting and boarding the bus) and accounts for the number of on-board passengers, boarding and alighting passengers. The model also captures the stochasticity and the correlation between the model coefficients with minimum computational requirements. Next the model was extended to capture the bus driver and vehicle impacts on the transit vehicle delay in the vicinity of bus stops, using a vehicle kinematics model with maximum speed and acceleration constraints to model the acceleration/deceleration delay. The validation of the model was done using field data that cover different driving conditions. Results of this work found that the proposed formulation successfully integrated the human and vehicle characteristics component in the model and that the new formulation improves the estimation of the total delay that transit vehicles experience near bus stops. Finally, the model was extended to estimate the time required to merge into the adjacent lane and the time required to traverse a queue upstream of a traffic signal. The final part of this study models the bus arrival time at traffic signal using shockwave and prediction model in a connected environment. This section aims to model the transit vehicle arrival time at traffic signal considering the impact of signal timing and the prevailing traffic conditions.
In summary, the proposed model overcomes the current state-of-the-art models in the following ways: 1) it accounts for the vehicle capacity and the number of on-board passengers on bus BA times, 2) it captures the stochasticity in the bus stop demand and the associated BA times, 3) it captures the impact of the traffic in modeling the delay at a bus stop , 4) it incorporates the driver and vehicle impact by modeling the acceleration and deceleration time, and 5) it uses shockwave analysis to estimate bus arrival times through the use of emerging technology data. Through statistical modeling and evaluation using field and simulated data, the model overcomes the current state-of practice and state-of art transit vehicle arrival time models.