VTechWorks staff will be away for the Independence Day holiday from July 4-7. We will respond to email inquiries on Monday, July 8. Thank you for your patience.
 

Design and Evaluation of Off-centered Core Fiber for Gas Sensing

dc.contributor.authorSu, Xuen
dc.contributor.committeechairZhu, Yizhengen
dc.contributor.committeememberPickrell, Gary R.en
dc.contributor.committeememberJia, Xiaotingen
dc.contributor.departmentElectrical Engineeringen
dc.date.accessioned2020-07-14T08:00:34Zen
dc.date.available2020-07-14T08:00:34Zen
dc.date.issued2020-07-13en
dc.description.abstractGas Sensing Has Become a Very Important and Attractive Technique Because of Its Various Applications, Such as in the Increasingly Concerning Case of Environmental Issues, Automobile Emission Detection, Natural Gas Leakage Detection, Etc. It Also Has Significant Applications in Industries, Such as Safety and Health Monitoring in Underground Mines. Among Those Sensing Areas, Fiber-optic Sensors Have Drawn Considerable Attention Because of Its Small Size, Light Weight, High Sensitivity, and Remote Sensing Capability. However, Current Fiber-optic Gas Sensing Techniques Have Several Limitations on Their Potential for Multiplexed or Distributed Sensing Due to Difficulties Such as High Complexity or Large Loss. To Accomplish the Goal for Multiplexed Gas Sensing, an Off-centered Core Fiber Design Is Investigated. The Eccentric Core Can Reduce Attenuation, Keep Mechanical Strength, and Lower Fabrication Cost. To Verify the Feasibility of the Design, Fiber Field Distribution Is First Studied in Simulation, Which Will Be Discussed in Detail in Chapter 2. Then Two Fiber Samples with a Length of 10 Cm and 40 Cm Are Prepared and Placed in a Custom Methane Sensing System for Gas Absorption Testing, Which Is Detailed in Chapter 3. From Etching Analysis, Localized Surface Defects Are Found as the Main Reason for Power Loss. Performance Such as Detection Resolution and Sensitivity Are Investigated. In Chapter 4, Theoretical Evaluations Have Been Conducted for Multiplexed Sensors Performances Using the Off-centered Core Fiber to Study the Impact Fiber Parameters on Sensing System Design. The Conclusion and Summary Are Presented in Chapter 5.en
dc.description.abstractgeneralGas Sensing Has Become a Very Important and Attractive Technique Because of Its Various Applications, Such as in the Increasingly Concerning Case of Environmental Issues, Automobile Emission Detection, Natural Gas Leakage Detection, Etc. It Also Has Significant Applications in Industries, Such as Safety and Health Monitoring in Underground Mines. Among Those Sensing Areas, Fiber-optic Sensors Have Drawn Considerable Attention Because of Its Small Size, Light Weight, High Sensitivity, and Remote Sensing Capability. However, Current Fiber-optic Gas Sensing Techniques Have Several Limitations on Their Potential for Long Distance Distributed Sensing Due to Difficulties Such as High Fabrication Complexity. In This Work, a Fiber-optic Gas Sensor with Special Structure Was Designed. The Sensor Can Reduce Attenuation, Keep Mechanical Strength, and Lower Fabrication Cost. To Verify the Feasibility of the Design, Theory Analysis and Simulation Were Conducted, Which Will Be Discussed in Detail in Chapter 2. Then Two Samples with a Length of 10 Cm and 40 Cm Were Prepared and Placed in a Custom Methane Sensing System for Testing. And Their Performance Such as Sensitivity Is Investigated. In Chapter 4, Theoretical Evaluations Have Been Conducted for Multiplexed Sensors Performances Evaluation to Study the Impact Fiber Parameters on Sensing System Design. The Conclusion and Summary Are Presented in Chapter 5.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:26829en
dc.identifier.urihttp://hdl.handle.net/10919/99348en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectFiber-optic gas sensoren
dc.subjectOff-centered core fiberen
dc.subjectMultiplexed sensoren
dc.titleDesign and Evaluation of Off-centered Core Fiber for Gas Sensingen
dc.typeThesisen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Su_X_T_2020.pdf
Size:
1.81 MB
Format:
Adobe Portable Document Format

Collections